Patents by Inventor Kirill Shtengel

Kirill Shtengel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8581227
    Abstract: A computer-implemented method for encryption and decryption using quantum computational model is disclosed. Such a method includes providing a model of a lattice having a system of non-abelian anyons disposed thereon. From the lattice model, a first quantum state associated with the lattice is determined. Movement of non-abelian anyons within the lattice is modeled to model formation of first and second quantum braids in the space-time of the lattice. The first quantum braid corresponds to first text. The second quantum braid corresponds to second text. A second quantum state associated with the lattice is determined from the lattice model after formation of the first and second quantum braids has been modeled. The second quantum state corresponds to second text that is different from the first text.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 12, 2013
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 8471245
    Abstract: An implementation of a single qubit phase gate for use in a quantum information processing scheme based on the ?=5/2 fractional quantum Hall (FQH) state is disclosed. Using sack geometry, a qubit consisting of two ?-quasiparticles, which may be isolated on respective antidots, may be separated by a constriction from the bulk of a two-dimensional electron gas in the ?=5/2 FQH state. An edge quasiparticle may induce a phase gate on the qubit. The number of quasiparticles that are allowed to traverse the edge path defines which gate is induced. For example, if a certain number of quasiparticles are allowed to traverse the path, then a ?/8 gate may be effected.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: June 25, 2013
    Assignee: Microsoft Corporation
    Inventors: Parsa Bonderson, Kirill Shtengel, David Clarke, Chetan Nayak
  • Publication number: 20120072191
    Abstract: A computer-implemented method for encryption and decryption using quantum computational model is disclosed. Such a method includes providing a model of a lattice having a system of non-abelian anyons disposed thereon. From the lattice model, a first quantum state associated with the lattice is determined. Movement of non-abelian anyons within the lattice is modeled to model formation of first and second quantum braids in the space-time of the lattice. The first quantum braid corresponds to first text. The second quantum braid corresponds to second text. A second quantum state associated with the lattice is determined from the lattice model after formation of the first and second quantum braids has been modeled. The second quantum state corresponds to second text that is different from the first text.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 22, 2012
    Applicant: MICROSOFT CORPORATION
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Publication number: 20120049162
    Abstract: An implementation of a single qubit phase gate for use in a quantum information processing scheme based on the ?=5/2 fractional quantum Hall (FQH) state is disclosed. Using sack geometry, a qubit consisting of two ?-quasiparticles. which may be isolated on respective antidots, may be separated by a constriction from the bulk of a two-dimensional electron gas in the ?=5/2 FQH state. An edge quasiparticle may induce a phase gate on the qubit. The number of quasiparticles that are allowed to traverse the edge path defines which gate is induced. For example, if a certain number of quasiparticles are allowed to traverse the path, then a ?/8 gate may be effected.
    Type: Application
    Filed: November 8, 2011
    Publication date: March 1, 2012
    Applicant: Microsoft Corporation
    Inventors: Parsa Bonderson, Kirill Shtengel, David Clarke, Chetan Nayak
  • Patent number: 8076666
    Abstract: An implementation of a single qubit phase gate for use in a quantum information processing scheme based on the ?=5/2 fractional quantum Hall (FQH) state is disclosed. Using sack geometry, a qubit consisting of two ?-quasiparticles. which may be isolated on respective antidots, may be separated by a constriction from the bulk of a two-dimensional electron gas in the ?=5/2 FQH state. An edge quasiparticle may induce a phase gate on the qubit. The number of quasiparticles that are allowed to traverse the edge path defines which gate is induced. For example, if a certain number of quasiparticles are allowed to traverse the path, then a ?/8 gate may be effected.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: December 13, 2011
    Assignee: Microsoft Corporation
    Inventors: Parsa Bonderson, Kirill Shtengel, David Clarke, Chetan Nayak
  • Patent number: 8058638
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such quantum computational systems may include quantum computers, quantum cryptography systems, quantum information processing systems, quantum storage media, and special purpose quantum simulators.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: November 15, 2011
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 8053754
    Abstract: A computer-implemented method for encryption and decryption using a quantum computational model is disclosed. Such a method includes providing a model of a lattice having a system of non-abelian anyons disposed thereon. From the lattice model, a first quantum state associated with the lattice is determined. Movement of non-abelian anyons within the lattice is modeled to model formation of first and second quantum braids in the space-time of the lattice. The first quantum braid corresponds to first text. The second quantum braid corresponds to second text. A second quantum state associated with the lattice is determined from the lattice model after formation of the first and second quantum braids has been modeled. The second quantum state corresponds to second text that is different from the first text.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 8, 2011
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Publication number: 20100264402
    Abstract: An implementation of a single qubit phase gate for use in a quantum information processing scheme based on the ?=5/2 fractional quantum Hall (FQH) state is disclosed. Using sack geometry, a qubit consisting of two ?-quasiparticles. which may be isolated on respective antidots, may be separated by a constriction from the bulk of a two-dimensional electron gas in the ?=5/2 FQH state. An edge quasiparticle may induce a phase gate on the qubit. The number of quasiparticles that are allowed to traverse the edge path defines which gate is induced. For example, if a certain number of quasiparticles are allowed to traverse the path, then a ?/8 gate may be effected.
    Type: Application
    Filed: August 28, 2009
    Publication date: October 21, 2010
    Applicant: Microsoft Corporation
    Inventors: Parsa Bonderson, Kirill Shtengel, David Clarke, Chetan Nayak
  • Publication number: 20090220082
    Abstract: A computer-implemented method for encryption and decryption using a quantum computational model is disclosed. Such a method includes providing a model of a lattice having a system of non-abelian anyons disposed thereon. From the lattice model, a first quantum state associated with the lattice is determined. Movement of non-abelian anyons within the lattice is modeled to model formation of first and second quantum braids in the space-time of the lattice. The first quantum braid corresponds to first text. The second quantum braid corresponds to second text. A second quantum state associated with the lattice is determined from the lattice model after formation of the first and second quantum braids has been modeled. The second quantum state corresponds to second text that is different from the first text.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 3, 2009
    Applicant: MICROSOFT CORPORATION
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7579699
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: August 25, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7566896
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice. Various platforms can be used to physically implement such a quantum computer. Platforms include an optical lattice, a Josephson junction array, a quantum dot, and a crystal structure. Each platform comprises an appropriate array of associated sites that can be used to approximate a desired Kagome geometry. A charge controller is desirably electrically coupled to the platform so that the array may be manipulated as desired.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: July 28, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7525202
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such quantum computational systems may include quantum computers, quantum cryptography systems, quantum information processing systems, quantum storage media, and special purpose quantum simulators.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: April 28, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Publication number: 20090097652
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such quantum computational systems may include quantum computers, quantum cryptography systems, quantum information processing systems, quantum storage media, and special purpose quantum simulators.
    Type: Application
    Filed: November 6, 2008
    Publication date: April 16, 2009
    Applicant: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7518138
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice. A topological quantum computer encodes information in the configurations of different braids. The computer physically weaves braids in the 2D+1 space-time of the lattice, and uses this braiding to carry out calculations. A pair of quasi-particles, such as non-abelian anyons, can be moved around each other in a braid-like path. The quasi-particles can be moved as a result of a magnetic or optical field being applied to them, for example.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: April 14, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7474010
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: January 6, 2009
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7453162
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 18, 2008
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Publication number: 20080120259
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Application
    Filed: December 21, 2007
    Publication date: May 22, 2008
    Applicant: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Publication number: 20070162407
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Application
    Filed: February 9, 2007
    Publication date: July 12, 2007
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Patent number: 7109593
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: September 19, 2006
    Assignee: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel
  • Publication number: 20060091375
    Abstract: Apparatus and methods for performing quantum computations are disclosed. Such apparatus and methods may include identifying a first quantum state of a lattice having a system of quasi-particles disposed thereon, moving the quasi-particles within the lattice according to at least one predefined rule, identifying a second quantum state of the lattice after the quasi-particles have been moved, and determining a computational result based on the second quantum state of the lattice. A topological quantum computer encodes information in the configurations of different braids. The computer physically weaves braids in the 2D+1 space-time of the lattice, and uses this braiding to carry out calculations. A pair of quasi-particles, such as non-abelian anyons, can be moved around each other in a braid-like path. The quasi-particles can be moved as a result of a magnetic or optical field being applied to them, for example.
    Type: Application
    Filed: August 31, 2004
    Publication date: May 4, 2006
    Applicant: Microsoft Corporation
    Inventors: Michael Freedman, Chetan Nayak, Kirill Shtengel