Patents by Inventor Kirk Emil Apt

Kirk Emil Apt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200063174
    Abstract: The present invention relates to recombinant microalgal cells and their use in heterologous protein production, methods of production of heterologous polypeptides in microalgal extracellular bodies, microalgal extracellular bodies comprising heterologous polypeptides, and compositions comprising the same.
    Type: Application
    Filed: September 3, 2019
    Publication date: February 27, 2020
    Applicant: SANOFI VACCINE TECHNOLOGIES, S.A.S.
    Inventors: Anne-Cecile V. BAYNE, James Casey LIPPMEIER, Kirk Emil APT, Ross Eric ZIRKLE
  • Publication number: 20150110826
    Abstract: The present invention relates to recombinant microalgal cells and their use in heterologous protein production, methods of production of heterologous polypeptides in microalgal extracellular bodies, microalgal extracellular bodies comprising heterologous polypeptides, and compositions comprising the same.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Applicant: SANOFI VACCINE TECHNOLOGIES, S.A.S.
    Inventors: Anne-Cecile V. BAYNE, James Casey LIPPMEIER, Kirk Emil APT, Ross Eric ZIRKLE
  • Patent number: 9012197
    Abstract: The present invention is directed to recombinant microalgal cells and their use in production of heterologous hemagglutinin-neuraminidase (HN) polypeptides, as well as compositions and uses thereof.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 21, 2015
    Assignees: Merial, Inc., Sanofi Vaccine Technologies, S.A.S.
    Inventors: Anne-Cécile V. Bayne, James Casey Lippmeier, Kirk Emil Apt, Xuan Guo, Joyce A. Pritchard
  • Publication number: 20120034653
    Abstract: Most microalgae are obligate photoautotrophs and their growth is strictly dependent on the generation of photosynthetically-derived energy. In this study it is shown that the microalga Phaeodaclylurn tricornutum can be engineered to import glucose and grow in the dark through the introduction of genes encoding glucose transporters. Both the human and Chlorella kessleri glucose transporters facilitated the uptake of glucose by P. tricornutum, allowing the cells to metabolize exogenous organic carbon and thrive, independent of light. This is the first successful trophic conversion of an obligate photoautotroph through metabolic engineering, and it demonstrates that methods of cell nourishment can be fundamentally altered with the introduction of a single gene. Since strains transformed with the glucose transport genes are able to grow non-photosynthetically, they can be exploited for the analysis of photosynthetic processes through mutant generation and characterization.
    Type: Application
    Filed: July 22, 2011
    Publication date: February 9, 2012
    Applicant: Martek Biosciences Corporation
    Inventors: Kirk Emil APT, F.C. Thomas Allnutt, David J. Kyle, James Casey Lippmeier
  • Patent number: 8008061
    Abstract: Most microalgae are obligate photoautotrophs and their growth is strictly dependent on the generation of photosynthetically-derived energy. In this study it is shown that the microalga Phaeodaclylurn tricornutum can be engineered to import glucose and grow in the dark through the introduction of genes encoding glucose transporters. Both the human and Chlorella kessleri glucose transporters facilitated the uptake of glucose by P. tricornutum, allowing the cells to metabolize exogenous organic carbon and thrive, independent of light. This is the first successful trophic conversion of an obligate photoautotroph through metabolic engineering, and it demonstrates that methods of cell nourishment can be fundamentally altered with the introduction of a single gene. Since strains transformed with the glucose transport genes are able to grow non-photosynthetically, they can be exploited for the analysis of photosynthetic processes through mutant generation and characterization.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: August 30, 2011
    Assignee: Martek Biosciences Corporation
    Inventors: Kirk Emil Apt, F. C. Thomas Allnutt, David J. Kyle, James Casy Lippmeier
  • Publication number: 20110195480
    Abstract: The present invention is directed to recombinant microalgal cells and their use in production of heterologous hemagglutinin-neuraminidase (HN) polypeptides, as well as compositions and uses thereof.
    Type: Application
    Filed: December 28, 2010
    Publication date: August 11, 2011
    Inventors: Anne-Cécile V. Bayne, James Casey Lippmeier, Kirk Emil APT, Xuan Guo, Joyce A. Pritchard
  • Publication number: 20110195448
    Abstract: The present invention is directed to recombinant thraustochytrids that grow on xylose and cell cultures comprising the recombinant thraustochytrids as well as methods of producing cell cultures, biomasses, microbial oils, compositions, and biofuels using the recombinant thraustochytrids.
    Type: Application
    Filed: December 28, 2010
    Publication date: August 11, 2011
    Inventors: James Casey LIPPMEIER, Kirk Emil Apt
  • Publication number: 20110195449
    Abstract: The present invention is directed to recombinant thraustochytrids that grow on sucrose and cell cultures comprising the recombinant thraustochytrids as well as methods of producing cell cultures, biomasses, microbial oils, compositions, and biofuels using the recombinant thraustochytrids.
    Type: Application
    Filed: December 28, 2010
    Publication date: August 11, 2011
    Inventors: James Casey Lippmeier, Kirk Emil Apt, Jon Milton Hansen
  • Publication number: 20110189228
    Abstract: The present invention relates to recombinant microalgal cells and their use in heterologous protein production, methods of production of heterologous polypeptides in microalgal extracellular bodies, microalgal extracellular bodies comprising heterologous polypeptides, and compositions comprising the same.
    Type: Application
    Filed: December 28, 2010
    Publication date: August 4, 2011
    Inventors: Anne-Cécíle V. BAYNE, James Casey LIPPMEIER, Kirk Emil APT, Ross Eric ZIRKLE
  • Patent number: 7939710
    Abstract: Most microalgae are obligate photoautotrophs and their growth is strictly dependent on the generation of photosynthetically-derived energy. In this study it is shown that the microalga Phaeodaclylurn tricornutum can be engineered to import glucose and grow in the dark through the introduction of genes encoding glucose transporters. Both the human and Chlorella kessleri glucose transporters facilitated the uptake of glucose by P. tricornutum, allowing the cells to metabolize exogenous organic carbon and thrive, independent of light. This is the first successful trophic conversion of an obligate photoautotroph through metabolic engineering, and it demonstrates that methods of cell nourishment can be fundamentally altered with the introduction of a single gene. Since strains transformed with the glucose transport genes are able to grow non-photosynthetically, they can be exploited for the analysis of photosynthetic processes through mutant generation and characterization.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: May 10, 2011
    Assignee: Martek Biosciences Corporation
    Inventors: Kirk Emil Apt, F. C. Thomas Allnutt, David J. Kyle, James Casey Lippmeier
  • Publication number: 20080138851
    Abstract: Most microalgae are obligate photoautotrophs and their growth is strictly dependent on the generation of photosynthetically-derived energy. In this study it is shown that the microalga Phaeodaclylurn tricornutum can be engineered to import glucose and grow in the dark through the introduction of genes encoding glucose transporters. Both the human and Chlorella kessleri glucose transporters facilitated the uptake of glucose by P. tricornutum, allowing the cells to metabolize exogenous organic carbon and thrive, independent of light. This is the first successful trophic conversion of an obligate photoautotroph through metabolic engineering, and it demonstrates that methods of cell nourishment can be fundamentally altered with the introduction of a single gene. Since strains transformed with the glucose transport genes are able to grow non-photosynthetically, they can be exploited for the analysis of photosynthetic processes through mutant generation and characterization.
    Type: Application
    Filed: August 21, 2007
    Publication date: June 12, 2008
    Applicant: Martek Biosciences Corporation
    Inventors: Kirk Emil Apt, F.C. Thomas Allnutt, David J. Kyle, James Casey Lippmeier