Patents by Inventor Kiyonori Ohyu

Kiyonori Ohyu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7737505
    Abstract: A semiconductor device may include, but is not limited to, a single crystal silicon diffusion layer, a polycrystal silicon conductor, and a diffusion barrier layer. The diffusion barrier layer separates the polycrystal silicon conductor from the single crystal silicon diffusion layer. The diffusion barrier layer prevents a diffusion of at least one of silicon-interstitial and silicon-vacancy between the single crystal silicon diffusion layer and the polycrystal silicon conductor.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: June 15, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Kensuke Okonogi, Kiyonori Ohyu
  • Patent number: 7700431
    Abstract: A method for manufacturing a DRAM device on a silicon substrate includes: forming cell transistors in a memory cell area and other transistors in a peripheral circuit area; forming polysilicon plugs connected to diffused regions of the cell transistors and metallic plugs connected to diffused regions of the other transistors; heat treating at a temperature of 980 to 1,020 degrees C.; heat treating at a temperature of 700 to 850 degrees C.; implanting fluorine or boron fluoride into the diffused regions of the other transistors; and heat treating at a temperature of 500 to 850 degrees C.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: April 20, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Kensuke Okonogi, Kiyonori Ohyu, Kazutaka Manabe, Satoru Yamada, Takuo Ohashi
  • Publication number: 20080230845
    Abstract: A semiconductor device may include, but is not limited to, a single crystal silicon diffusion layer, a polycrystal silicon conductor, and a diffusion barrier layer. The diffusion barrier layer separates the polycrystal silicon conductor from the single crystal silicon diffusion layer. The diffusion barrier layer prevents a diffusion of at least one of silicon-interstitial and silicon-vacancy between the single crystal silicon diffusion layer and the polycrystal silicon conductor.
    Type: Application
    Filed: September 21, 2007
    Publication date: September 25, 2008
    Applicant: ELPIDA MEMORY, INC
    Inventors: Kensuke Okonogi, Kiyonori Ohyu
  • Publication number: 20080061339
    Abstract: A semiconductor device includes a single-crystal semiconductor substrate; and a stress applying device for applying a desired mess to specific one or more parts on or in the single-crystal semiconductor substrate. Typically, the stress applying device includes a capacitance element, which is arranged in the vicinity of the specific one or more parts, and has a dielectric made of an electrostrictive material; and a device for applying a voltage in a direction parallel to a polarization vector of the dielectric. The specific one or more parts may be one or more p-n junctions, each of which may be included in a MOS transistor. In this case, each MOS transistor may function as a redundant cell or a main cell for forming a DRAM. The desired stress may be applied in a predetermined direction, and may have an amount for applying a desired distortion to the specific one or more parts.
    Type: Application
    Filed: September 7, 2007
    Publication date: March 13, 2008
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Kensuke OKONOGI, Kiyonori OHYU
  • Patent number: 7186632
    Abstract: In a method for manufacturing a semiconductor device having a laminated gate electrode, a phosphorus-doped polysilicon is formed on a gate oxide film. A high-melting metal or a compound of a high-melting metal and silicon is formed on the polysilicon. Phosphorus is doped into the polysilicon so that a concentration of the phosphorus in the polysilicon at an interface between the polysilicon and the gate oxide film is 2×1020(1/cm3) or less. Then, thermal oxidation is carried out in a wet-hydrogen atmosphere containing water vapor.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: March 6, 2007
    Assignee: Elpida Memory, Inc.
    Inventors: Kazuo Ogawa, Kiyonori Ohyu, Kensuke Okonogi, Toshihiro Imamura, Keiichi Watanabe, Hiroyuki Ohta
  • Patent number: 7081649
    Abstract: A technology for a semiconductor integrated circuitry allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operate faster. In a method of manufacturing such a semiconductor integrated circuit, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes there is formed a first side wall spacer 14 composed of silicon nitride and a second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area there are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and connecting portion is formed connecting a conductor 20 to a bit line BL.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: July 25, 2006
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kozo Watanabe, Atsushi Ogishima, Masahiro Moniwa, Syunichi Hashimoto, Masayuki Kojima, Kiyonori Ohyu, Kenichi Kuroda, Nozomu Matsuda
  • Publication number: 20050282335
    Abstract: A method for manufacturing a DRAM device on a silicon substrate includes: forming cell transistors in a memory cell area and other transistors in a peripheral circuit area; forming polysilicon plugs connected to diffused regions of the cell transistors and metallic plugs connected to diffused regions of the other transistors; heat treating at a temperature of 980 to 1,020 degrees C.; heat treating at a temperature of 700 to 850 degrees C.; implanting fluorine or boron fluoride into the diffused regions of the other transistors; and heat treating at a temperature of 500 to 850 degrees C.
    Type: Application
    Filed: June 16, 2005
    Publication date: December 22, 2005
    Applicant: Elpida Memory, Inc.
    Inventors: Kensuke Okonogi, Kiyonori Ohyu, Kazutaka Manabe, Satoru Yamada, Takuo Ohashi
  • Publication number: 20050017274
    Abstract: A technology for a semiconductor integrated circuitry allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operate faster. In a method of manufacturing such a semiconductor integrated circuit, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes there is formed a first side wall spacer 14 composed of silicon nitride and a second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area there are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and connecting portion is formed connecting a conductor 20 to a bit line BL.
    Type: Application
    Filed: August 18, 2004
    Publication date: January 27, 2005
    Inventors: Kozo Watanabe, Atsushi Ogishima, Masahiro Moniwa, Syunichi Hashimoto, Masayuki Kojima, Kiyonori Ohyu, Kenichi Kuroda, Nozomu Matsuda
  • Patent number: 6800888
    Abstract: A technology for a semiconductor integrated circuitry allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operate faster. In a method of manufacturing such a semiconductor integrated circuit, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes there is formed a first side wall spacer 14 composed of silicon nitride and a second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area there are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and connecting portion is formed connecting a conductor 20 to a bit line BL.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: October 5, 2004
    Assignees: Hitchi, Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kozo Watanabe, Atsushi Ogishima, Masahiro Moniwa, Syunichi Hashimoto, Masayuki Kojima, Kiyonori Ohyu, Kenichi Kuroda, Nozomu Matsuda
  • Publication number: 20040147077
    Abstract: A technology for a semiconductor integrated circuitry allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operate faster. In a method of manufacturing such a semiconductor integrated circuit, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes there is formed a first side wall spacer 14 composed of silicon nitride and a second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area there are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and connecting portion is formed connecting a conductor 20 to a bit line BL.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 29, 2004
    Inventors: Kozo Watanabe, Atsushi Ogishima, Masahiro Moniwa, Syunichi Hashimoto, Masayuki Kojima, Kiyonori Ohyu, Kenichi Kuroda, Nozomu Matsuda
  • Patent number: 6743673
    Abstract: A technology for a semiconductor integrated circuitry allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operate faster. In a method of manufacturing such a semiconductor integrated circuit, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes there is formed a first side wall spacer 14 composed of silicon nitride and a second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area there are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and connecting portion is formed connecting a conductor 20 to a bit line BL.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: June 1, 2004
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kozo Watanabe, Atsushi Ogishima, Masahiro Moniwa, Syunichi Hashimoto, Masayuki Kojima, Kiyonori Ohyu, Kenichi Kuroda, Nozomu Matsuda
  • Patent number: 6734479
    Abstract: In a semiconductor integrated circuit device having a memory cell which includes a MIS.FET and a capacitance element, the conductivity type of a low-resistance polysilicon film which constitutes the gate electrode (5g) of the memory cell selecting MIS.FET (Q) of n-channel type constituting the memory cell is set at p+-type in order to enhance the refresh characteristics of the memory cell.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: May 11, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Ogishima, Kiyonori Ohyu
  • Publication number: 20040018708
    Abstract: In a method for manufacturing a semiconductor device having a laminated gate electrode, a phosphorus-doped polysilicon is formed on a gate oxide film. A high-melting metal or a compound of a high-melting metal and silicon is formed on the polysilicon. Phosphorus is doped into the polysilicon so that a concentration of the phosphorus in the polysilicon at an interface between the polysilicon and the gate oxide film is 2×1020 (1/cm3) or less. Then, thermal oxidation is carried out in a wet-hydrogen atmosphere containing water vapor.
    Type: Application
    Filed: March 24, 2003
    Publication date: January 29, 2004
    Inventors: Kazuo Ogawa, Kiyonori Ohyu, Kensuke Okonogi, Toshihiro Imamura, Keiichi Watanabe, Hiroyuki Ohta
  • Patent number: 6573546
    Abstract: A field oxide film 3 in a region where relief cells are formed is made wider than the field oxide film 3 in a region where normal memory cells are formed thereby to make a field relaxation layer 8r of the relief cells deeper than the field relaxation layer 8 of the normal cells, and the depletion layer of the sources and drains (n-type semiconductor regions) of the relief cells is widened to weaken the junction field.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: June 3, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kiyonori Ohyu, Makoto Ohkura, Aritoshi Sugimoto, Yoshitaka Tadaki, Makoto Ogasawara, Masashi Horiguchi, Norio Hasegawa, Shinichi Fukada
  • Patent number: 6503794
    Abstract: It is an object of the present invention to provide a technology of a semiconductor integrated circuitry that allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operated faster. In a method for manufacturing such a semiconductor integrated circuitry of the present invention, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes is formed the first side wall spacer 14 composed of silicon nitride and the second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and are formed connecting portion connecting a conductor 20 to a bit line BL.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: January 7, 2003
    Assignees: Hitachi, Ltd., Hitachi ULSI Systems Co., Ltd.
    Inventors: Kozo Watanabe, Atsushi Ogishima, Masahiro Moniwa, Syunichi Hashimoto, Masayuki Kojima, Kiyonori Ohyu, Kenichi Kuroda, Nozomu Matsuda
  • Publication number: 20020137281
    Abstract: A technology for a semiconductor integrated circuitry allows each of the DRAM memory cells to be divided finely so as to be more highly integrated and operate faster. In a method of manufacturing such a semiconductor integrated circuit, at first, gate electrodes 7 are formed via a gate insulating film 6 on the main surface of a semiconductor substrate 1, and on side surfaces of each of the gate electrodes there is formed a first side wall spacer 14 composed of silicon nitride and a second side wall spacer 15 composed of silicon oxide. Then, in the selecting MISFET Qs in the DRAM memory cell area there are opened connecting holes 19 and 21 in a self-matching manner with respect to the first side wall spacers 14 and connecting portion is formed connecting a conductor 20 to a bit line BL.
    Type: Application
    Filed: May 16, 2002
    Publication date: September 26, 2002
    Inventors: Kozo Watanabe, Atsushi Ogishima, Masahiro Moniwa, Syunichi Hashimoto, Masayuki Kojima, Kiyonori Ohyu, Kenichi Kuroda, Nozomu Matsuda
  • Publication number: 20020000595
    Abstract: A field oxide film 3 in a region where relief cells are formed is made wider than the field oxide film 3 in a region where normal memory cells are formed thereby to make a field relaxation layer 8r of the relief cells deeper than the field relaxation layer 8 of the normal cells, and the depletion layer of the sources and drains (n-type semiconductor regions) of the relief cells is widened to weaken the junction field.
    Type: Application
    Filed: August 7, 2001
    Publication date: January 3, 2002
    Inventors: Kiyonori Ohyu, Makoto Ohkura, Aritoshi Sugimoto, Yoshitaka Tadaki, Makoto Ogasawara, Masashi Horiguchi, Norio Hasegawa, Shinichi Fukada
  • Patent number: 6291847
    Abstract: A field oxide film 3 in a region where relief cells are formed is made wider than the field oxide film 3 in a region where normal memory cells are formed thereby to make a field relaxation layer 8r of the relief cells deeper than the field relaxation layer 8 of the normal cells, and the depletion layer of the sources and drains (n-type semiconductor regions) of the relief cells is widened to weaken the junction field.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: September 18, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Kiyonori Ohyu, Makoto Ohkura, Aritoshi Sugimoto, Yoshitaka Tadaki, Makoto Ogasawara, Masashi Horiguchi, Norio Hasegawa, Shinichi Fukada
  • Patent number: 5426326
    Abstract: An arrangement is provided to decrease the junction degradation caused by the leakage current at a p-n junction in semiconductor devices. This arrangement can be useful for a variety of devices, and is especially effective for reducing junction degradation at the source or drain region of a MOSFET. To achieve such a reduction, a p-n junction layer is provided at a p-n junction of a semiconductor region and a substrate. Carrier concentration distributions of a p-type layer and an n-type layer of the p-n junction layer are set so that an electric field which tends to be increased by a local electric field enhancement in a depletion layer of the p-n junction due to a precipitate introduced from a semiconductor surface will not exceed 1 MV/cm. When the depth of a depletion layer of the p-type layer or the n-type layer is referred to as Xp or Xn, and the slope of the carrier concentration, Ap or An, the following relation is provided:4.3.times.10.sup.12 (/cm.sup.2).gtoreq.An.multidot.Xn.sup.2 =Ap.multidot.Xp.sup.
    Type: Grant
    Filed: August 9, 1993
    Date of Patent: June 20, 1995
    Assignee: Hitachi, Ltd.
    Inventors: Kiyonori Ohyu, Kozo Watanabe, Osamu Tsuchiya, Kazuyoshi Oshima, Yoshifumi Kawamoto, Atsushi Hiraiwa, Takashi Nishida
  • Patent number: 5066355
    Abstract: A method of producing a hetero structure, including the steps of depositing hydrogen atoms or halogen atoms onto a surface of a first single crystal layer formed of semiconductor or metal silicide, and forming a second single crystal layer on the first single crystal layer by hetero epitaxial growth, the second single crystal layer being formed of semiconductor or metal silicide different from the material of the first single crystal layer, wherein both of the steps are continuously conducted without taking the hetero structure out of a producing device. Further, the number of the hydrogen atoms or the halogen atoms to be deposited is equal to or in the range of .+-.50% with reference to the number of dangling bonds existing in a hetero interface between the first single crystal layer and the second single crystal layer, so that the lattice defects in the hetero interface can be reduced.
    Type: Grant
    Filed: November 16, 1989
    Date of Patent: November 19, 1991
    Assignee: Agency of Industrial Science and Technology
    Inventors: Masanobu Miyao, Kiyokazu Nakagawa, Kiyonori Ohyu, Eiichi Murakami, Takashi Ohshima