Patents by Inventor Kiyoo Itoh

Kiyoo Itoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7023721
    Abstract: A semiconductor integrated circuit device including a plurality of memory cells, each having a storage MOSFET holding information in a gate of the storage MOSFET, a write transistor supplying a write information voltage corresponding to the information to the gate storage MOSFET, and a capacitor having first and second terminals. Word lines and data lines are coupled with the memory cells. The first capacitor terminal is coupled with one of the word lines and the second capacitor terminal is coupled with the gate of the storage MOSFET. In a read operation of the semiconductor integrated circuit device, the gate voltage of the storage MOSFET is boosted by a transition of the word line from a first voltage to a second voltage greater than the first voltage.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: April 4, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Kiyoo Itoh, Kazuo Nakazato
  • Patent number: 7023237
    Abstract: Power dissipation of a semiconductor integrated circuit chip is reduced when it is operated at an operating voltage of 2.5 V or below. A switching element is provided in each circuit block within the chip. Constants of the switching element are set so that leakage current in each switching element in their off-state is smaller than the subthreshold current of MOS transistors within the corresponding circuit block. Active current is supplied to active circuit blocks, while switching elements of non-active circuit blocks are turned off. Thus, dissipation currents of non-active circuit blocks are limited to leakage current value of corresponding switching elements. Thus, the sum of dissipation currents of non-active circuit blocks is made smaller than the active current in the active circuit blocks. As a result, power dissipation in the semiconductor integrated circuit chip can be reduced even in the active state.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: April 4, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Takeshi Sakata, Kiyoo Itoh, Masashi Horiguchi
  • Publication number: 20060039218
    Abstract: A sense amplifier capable of performing high-speed data sense operation with lower power consumption using a minuscule signal from a memory cell even in a case where a memory array voltage is reduced. A plurality of drive switches for over-driving are distributively arranged in a sense amplifier area, and a plurality of drive switches for restore operation are concentratively disposed at one end of a row of the sense amplifiers. A potential for over-driving is supplied using a meshed power line circuit. Through the use of the drive switches for over-driving, initial sense operation can be performed on data line pairs with a voltage having an amplitude larger than a data-line amplitude, allowing implementation of high-speed sense operation. The distributed arrangement of the drive switched for over-driving makes it possible to dispersively supply current in sense operation, thereby reducing a difference in sense voltage with respect to far and near positions of the sense amplifiers.
    Type: Application
    Filed: August 18, 2005
    Publication date: February 23, 2006
    Inventors: Riichiro Takemura, Kiyoo Itoh, Tomonori Sekiguchi, Takeshi Sakata, Katsutaka Kimura
  • Patent number: 7002831
    Abstract: A memory cell in a so-called MRAM by utilizing a tunnel magnetic resistance in the prior art has raised problems that a magnetic field to be applied to a TMR element is essentially weak since a word line for write is disposed apart from the TMR element, that a large current is required at the time of a writing operation, and that electric power consumption is large. In order to solve the above-described problems experienced in the prior art, the present invention provides an MRAM memory cell structure and its fabricating method in which a word line for write is disposed near a TMR element and surrounds it in three directions.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: February 21, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Hideyuki Matsuoka, Kenchi Ito, Takeshi Sakata, Kiyoo Itoh
  • Patent number: 7002856
    Abstract: A semiconductor integrated circuit comprises a semiconductor chip, a power supply terminal provided on the semiconductor chip for receiving a voltage from an external power supply source, an internal circuit provided on the semiconductor chip, a power supply circuit provided on the semiconductor chip for transforming an external power supply voltage received from the power supply terminal for supplying a source voltage resulting from the voltage transformation to the internal circuit, and a control circuit provided on the semiconductor chip for controlling the power supply circuit, wherein the control circuit includes external power supply voltage detecting means and/or temperature detecting means and responds to the signal from the external power supply voltage detecting means and/or the temperature detecting means by changing the power supply voltage to the internal circuit to thereby maintain the operating speed of the internal circuit to be constant.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: February 21, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Takao Watanabe, Ryoichi Hori, Goro Kitsukawa, Yoshiki Kawajiri, Takayuki Kawahara, Kiyoo Itoh
  • Publication number: 20050276094
    Abstract: A SRAM memory is composed of FD-SOI transistors, and performance of the memory cell is improved by controlling an electric potential of a layer under a buried oxide film of a SOI transistor constituting a driver transistor. Performance of the SRAM circuit in the low power voltage state is improved. In the SRAM memory cell composed of the FD-SOI transistor, an electric potential of a well under a BOX layer is controlled to control a threshold voltage Vth, thereby increasing a current. Thus, the operations of the memory cell can be stabilized.
    Type: Application
    Filed: June 14, 2005
    Publication date: December 15, 2005
    Inventors: Masanao Yamaoka, Kenichi Osada, Kiyoo Itoh, Takayuki Kawahara
  • Patent number: 6970391
    Abstract: A semiconductor integrated circuit comprises a semiconductor chip, a power supply terminal provided on the semiconductor chip for receiving a voltage from an external power supply source, an internal circuit provided on the semiconductor chip, a power supply circuit provided on the semiconductor chip for transforming an external power supply voltage received from the power supply terminal for supplying a source voltage resulting from the voltage transformation to the internal circuit, and a control circuit provided on the semiconductor chip for controlling the power supply circuit, wherein the control circuit includes external power supply voltage detecting means and/or temperature detecting means and responds to the signal from the external power supply voltage detecting means and/or the temperature detecting means by changing the power supply voltage to the internal circuit to thereby maintain the operating speed of the internal circuit to be constant.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: November 29, 2005
    Assignee: Renesas Technology Corporation
    Inventors: Takao Watanabe, Ryoichi Hori, Goro Kitsukawa, Yoshiki Kawajiri, Takayuki Kawahara, Kiyoo Itoh
  • Patent number: 6970019
    Abstract: A semiconductor integrated circuit device is composed of logic gates each provided with MOS transistors. The semiconductor integrated circuit device includes a current control device. The circuit can be used in devices that cycle in operation between high and low power consumption modes, such as microprocessors, that have both an operation mode and a low power back-up or sleep mode used for power reduction.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: November 29, 2005
    Inventors: Masashi Horiguchi, Kunio Uchiyama, Kiyoo Itoh, Takeshi Sakata, Masakazu Aoki, Takayuki Kawahara
  • Publication number: 20050226077
    Abstract: A static memory cell, composed of cross-coupled MOS transistors having a relatively high threshold voltage, is equipped with MOS transistors for controlling the power supply line voltage of the memory cell. To permit the voltage difference between two data storage nodes in the inactivated memory cell to exceed the voltage difference between the two nodes when write data is applied from a data line pair DL and /DL to the two nodes in the activated memory cell, the power supply line voltage control transistors are turned on to apply a high voltage VCH to the power supply lines after the word line voltage is turned off. The data holding voltage in the memory cell can be activated to a high voltage independent of the data line voltage, and the data holding voltage can be dynamically set so that read and write operations can be performed at high speed with low power consumption.
    Type: Application
    Filed: June 9, 2005
    Publication date: October 13, 2005
    Inventors: Kiyoo Itoh, Koichiro Ishibashi
  • Publication number: 20050219935
    Abstract: A semiconductor integrated circuit comprises a semiconductor chip, a power supply terminal provided on the semiconductor chip for receiving a voltage from an external power supply source, an internal circuit provided on the semiconductor chip, a power supply circuit provided on the semiconductor chip for transforming an external power supply voltage received from the power supply terminal for supplying a source voltage resulting from the voltage transformation to the internal circuit, and a control circuit provided on the semiconductor chip for controlling the power supply circuit, wherein the control circuit includes external power supply voltage detecting means and/or temperature detecting means and responds to the signal from the external power supply voltage detecting means and/or the temperature detecting means by changing the power supply voltage to the internal circuit to thereby maintain the operating speed of the internal circuit to be constant.
    Type: Application
    Filed: May 20, 2005
    Publication date: October 6, 2005
    Inventors: Takao Watanabe, Ryoichi Hori, Goro Kitsukawa, Yoshiki Kawajiri, Takayuki Kawahara, Kiyoo Itoh
  • Publication number: 20050219922
    Abstract: Method for manufacturing a memory device, the memory being a memory array with a spare bit line and being provided with a defect recovery scheme featuring a redundancy circuit. The redundancy circuit includes one or more comparing circuits having programmable elements which function as a memory for storing therein a defective address existing in the memory array. The programmable elements of the redundancy circuit can be programmed in accordance with any of a number of different types of defect modes. Each comparing circuit of the redundancy circuit compares information (data) inputted therein, for example, the column and row addresses which may be under the control of an address multiplex system, with that programmed in the programmable elements of the comparing circuit. On the basis of this comparison, an appropriate defect recovery is effected.
    Type: Application
    Filed: May 31, 2005
    Publication date: October 6, 2005
    Inventors: Masashi Horiguchi, Jun Etoh, Masakazu Aoki, Kiyoo Itoh
  • Publication number: 20050213414
    Abstract: A semiconductor integrated circuit device is composed of logic gates each provided with at least two MOS transistors. The logic gates are connected to a first potential point and a second potential point. The semiconductor integrated circuit device includes a current control device connected between the logic gate and the first potential point and/or between the logic gate and the second potential point for controlling a value of a current flowing in the logic gate depending on an operating state of the logic gate. The circuit can be used in devices that cycle in operation between high and low power consumption modes, such as microprocessors that have both an operation mode and a low power back-up or sleep mode used for power reduction.
    Type: Application
    Filed: May 18, 2005
    Publication date: September 29, 2005
    Inventors: Masashi Horiguchi, Kunio Uchiyama, Kiyoo Itoh, Takeshi Sakata, Masakazu Aoki, Takayuki Kawahara
  • Patent number: 6946704
    Abstract: A semiconductor memory cell and forming method thereof utilizes a vertical select transistor to eliminate the problem of a large cell surface area in memory cells of the related art utilizing phase changes. A memory cell with a smaller surface area than the DRAM device of the related art is achieved by the present invention. Besides low power consumption during read operation, the invention also provides phase change memory having low power consumption even during write operation. Phase change memory also has stable read-out operation.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: September 20, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Matsuoka, Kiyoo Itoh, Motoyasu Terao, Satoru Hanzawa, Takeshi Sakata
  • Publication number: 20050201182
    Abstract: Memory blocks having memory cells which are comprised of vertical transistors and memory elements in which the resistance value is varied depending on the temperature imposed on the upper side thereof, are laminated to realize a highly-integrated non-volatile memory.
    Type: Application
    Filed: September 3, 2004
    Publication date: September 15, 2005
    Inventors: Kenichi Osada, Kiyoo Itoh
  • Patent number: 6944078
    Abstract: A sense amplifier capable of performing high-speed data sense operation with lower power consumption using a minuscule signal from a memory cell even in a case where a memory array voltage is reduced. A plurality of drive switches for over-driving are distributively arranged in a sense amplifier area, and a plurality of drive switches for restore operation are concentratively disposed at one end of a row of the sense amplifiers. A potential for over-driving is supplied using a meshed power line circuit. Through the use of the drive switches for over-driving, initial sense operation can be performed on data line pairs with a voltage having an amplitude larger than a data-line amplitude, allowing implementation of high-speed sense operation. The distributed arrangement of the drive switched for over-driving makes it possible to dispersively supply current in sense operation, thereby reducing a difference in sense voltage with respect to far and near positions of the sense amplifiers.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: September 13, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Riichiro Takemura, Kiyoo Itoh, Tomonori Sekiguchi, Takeshi Sakata, Katsutaka Kimura
  • Publication number: 20050162894
    Abstract: A semiconductor integrated circuit device including a plurality of memory cells, each having a storage MOSFET holding information in a gate of the storage MOSFET, a write transistor supplying a write information voltage corresponding to the information to the gate storage MOSFET, and a capacitor having first and second terminals. Word lines and data lines are coupled with the memory cells. The first capacitor terminal is coupled with one of the word lines and the second capacitor terminal is coupled with the gate of the storage MOSFET. In a read operation of the semiconductor integrated circuit device, the gate voltage of the storage MOSFET is boosted by a transition of the word line from a first voltage to a second voltage greater than the first voltage.
    Type: Application
    Filed: March 22, 2005
    Publication date: July 28, 2005
    Inventors: Kiyoo Itoh, Kazuo Nakazato
  • Patent number: 6917556
    Abstract: A static memory cell, composed of cross-coupled MOS transistors having a relatively high threshold voltage, is equipped with MOS transistors for controlling the power supply line voltage of the memory cell. To permit the voltage difference between two data storage nodes in the inactivated memory cell to exceed the voltage difference between the two nodes when write data is applied from a data line pair DL and /DL to the two nodes in the activated memory cell, the power supply line voltage control transistors are turned on to apply a high voltage VCH to the power supply lines after the word line voltage is turned off. The data holding voltage in the memory cell can be activated to a high voltage independent of the data line voltage, and the data holding voltage can be dynamically set so that read and write operations can be performed at high speed with low power consumption.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: July 12, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Kiyoo Itoh, Koichiro Ishibashi
  • Patent number: 6909647
    Abstract: A semiconductor memory is provided with a defect recovery scheme featuring a redundancy circuit. The memory array in the memory has a plurality of word lines, a plurality of bit lines, a spare bit line, and a plurality of memory cells. The redundancy circuit includes one or more comparing circuits having programmable elements which function as a memory for storing therein a defective address existing in the memory array. The programmable elements of the redundancy circuit can be programmed in accordance with any of a number of different types of defect modes. Each comparing circuit of the redundancy circuit compares information (data) inputted therein, for example, the column and row addresses which may be under the control of an address multiplex system, with that programmed in the programmable elements of the comparing circuit. On the basis of this comparison, an appropriate defect recovery is effected.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: June 21, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Masashi Horiguchi, Jun Etoh, Masakazu Aoki, Kiyoo Itoh
  • Publication number: 20050094473
    Abstract: Power dissipation of a semiconductor integrated circuit chip is reduced when it is operated at an operating voltage of 2.5 V or below. A switching element is provided in each circuit block within the chip. Constants of the switching element are set so that leakage current in each switching element in their off-state is smaller than the subthreshold current of MOS transistors within the corresponding circuit block. Active current is supplied to active circuit blocks, while switching elements of non-active circuit blocks are turned off. Thus, dissipation currents of non-active circuit blocks are limited to leakage current value of corresponding switching elements. Thus, the sum of dissipation currents of non-active circuit blocks is made smaller than the active current in the active circuit blocks. As a result, power dissipation in the semiconductor integrated circuit chip can be reduced even in the active state.
    Type: Application
    Filed: December 7, 2004
    Publication date: May 5, 2005
    Inventors: Takeshi Sakata, Kiyoo Itoh, Masashi Horiguchi
  • Publication number: 20050088886
    Abstract: A semiconductor integrated circuit is disclosed, in which a memory is activated at high speed in commensurate with a high-speed logic circuit mounted with the memory in order to reduce the cost using a DRAM of a 3-transistor cell requiring no capacitor. A pair of data lines connected with a plurality of memory cells having the amplification function are set to different precharge voltage values, thereby eliminating the need of a dummy cell. The elimination of the need of the dummy cell unlike in the conventional DRAM circuit using a gain cell reduces both the required space and the production cost. A hierarchical structure of the data lines makes a high-speed operation possible. Also, a DRAM circuit can be fabricated through a fabrication process matched with an ordinary logic element.
    Type: Application
    Filed: November 3, 2004
    Publication date: April 28, 2005
    Inventors: Yusuke Kanno, Kiyoo Itoh