Patents by Inventor Kiyoshi Fukuchi

Kiyoshi Fukuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140029956
    Abstract: Since it is difficult to emit a stable and reliable modulated lightwave signal by means of IQ modulators used for QAM format, a method for controlling an optical transmitter according to an exemplary aspect of the invention includes the steps of (a) keeping an optical amplitude of a continuous wave light output from the optical transmitter constant, (b) making operating point values in optical modulation converge to predetermined values during step (a), and (c) modulating the continuous wave light with multiple amplitudes and phase levels around the operating point values converged in step (b).
    Type: Application
    Filed: April 19, 2011
    Publication date: January 30, 2014
    Applicant: NEC CORPORATION
    Inventors: Emmanuel Le Taillandier De Gabory, Sadao Fujita, Kiyoshi Fukuchi
  • Patent number: 8639114
    Abstract: In the optical communication device and the optical communication system using DPSK modulation whose cost is low, whose size is small and whose power consumption is low, the N:1 multiplexer 125 generates a serial signal by multiplexing a parallel signal coded by the DPSK modulation coding units 115˜117 bit by bit on a time division basis. The electric-phase modulation optical converter 127 converts a serial signal into a phase modulation light. The N-bit delay interferometer 132 executes DPSK decoding with respect to a phase modulation light by comparison with an N-bit preceding optical signal. The optical-electric signal converter 134 converts a decoded intensity modulation light into an electric signal. The N:1 demultiplexer 136 divides an electric signal converted by the optical-electric signal converter 134 into a number N of signals bit by bit on a time division basis.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 28, 2014
    Assignee: NEC Corporation
    Inventors: Satomi Shioiri, Toshiharu Itou, Kiyoshi Fukuchi, Hitoshi Takeshita
  • Patent number: 8634727
    Abstract: In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an interchannel skew arises, therefore, a coherent optical receiver according to an exemplary aspect of the invention includes a local light source; a 90-degree hybrid circuit; an optoelectronic converter; an analog-to-digital converter; and a digital signal processing unit, wherein the 90-degree hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs a plurality of optical signals separated into a plurality of signal components; the optoelectronic converter detects the optical signals and outputs detected electrical signals; the analog-to-digital converter quantizes the detected electrical signals and outputs quantized signals; and the digital signal processing unit includes a skew compensation unit for compensating a difference in propagation delay between the plurality of signal components, and a demodulation unit for dem
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: January 21, 2014
    Assignee: NEC Corporation
    Inventors: Wakako Yasuda, Junichi Abe, Kiyoshi Fukuchi
  • Patent number: 8626000
    Abstract: In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an inter-channel skew arises, therefore, a coherent optical receiver according to an exemplary aspect of the invention includes a local light source, a 90° hybrid circuit, an optoelectronic converter, an analog to digital converter, and a digital signal processing unit; wherein the 90° hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs a plurality of optical signals separated into a plurality of signal components; the optoelectronic converter detects the optical signals and outputs detected electrical signals; the analog to digital converter quantizes the detected electrical signals and outputs quantized signals; the digital signal processing unit includes a skew compensation unit for compensating a difference in propagation delay between the plurality of signal components, and an FFT operation unit for performing a fas
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: January 7, 2014
    Assignee: NEC Corporation
    Inventors: Junichi Abe, Wakako Yasuda, Kiyoshi Fukuchi
  • Publication number: 20140003555
    Abstract: A phase excursion compensation circuit of a phase modulation signal demodulator detects occurrence of a slip of a received signal from a change in a phase compensation amount that is formed into the received signal by a phase excursion compensation unit, and corrects the phase compensation amount of the received signal after the slip is generated.
    Type: Application
    Filed: November 15, 2011
    Publication date: January 2, 2014
    Applicant: NEC Corporation
    Inventors: Masahiro Shigihara, Kiyoshi Fukuchi
  • Publication number: 20130336654
    Abstract: In order to appropriately demultiplex the polarization multiplexed BPSK signal without using a training sequence and decreasing the resistance to a frequency offset, an optical receiver includes a coherent optical detection unit receiving an optical signal in which BPSK modulated carrier waves are polarization-multiplexed, performing coherent detection by mixing the received optical signal with local light, and outputting first electrical signals corresponding to the carrier waves; a butterfly FIR filter receiving the first electrical signals and extracting second electrical signals corresponding to each of the carrier waves from the first electrical signals; and a coefficient control unit for calculating a sum of respective phases of the second electrical signals output from the butterfly FIR filter, adaptively controlling tap coefficients of the butterfly FIR filter so that the calculated phase sum may become equal to 0 or ?, and outputting tap coefficients after being controlled to the butterfly FIR filter
    Type: Application
    Filed: February 28, 2012
    Publication date: December 19, 2013
    Applicant: NEC Corporation
    Inventors: Manabu Arikawa, Daisaku Ogasahara, Emmanuel Le Taillandier De Gabory, Kiyoshi Fukuchi
  • Publication number: 20130336647
    Abstract: Since it is difficult to fast, simply monitor impairments of received signals with higher receiver sensitivity, a monitoring method for an optical communication system according to an exemplary aspect of the invention includes the steps of emitting lightwave signals to be modulated according to a data, forming dips at transitions between temporally consecutive groups of n symbols of the lightwave signals, wherein the dips are formed at each of (n?1) first transitions of the group, no dip is formed at the n-th transition on the lightwave signals, receiving the lightwave signals, extracting frequency components characterized by the numerical value n from received lightwave signals, and monitoring the received lightwave signals by using the frequency components.
    Type: Application
    Filed: February 28, 2011
    Publication date: December 19, 2013
    Applicant: NEC Corporation
    Inventors: Emmanuel Le Taillandier De Gabory, Kiyoshi Fukuchi, Manabu Arikawa
  • Publication number: 20130266308
    Abstract: The disclosed coherent optical receiver includes a local light source; a 90-degree hybrid circuit; an optoelectronic converter; an analog-to-digital converter; a skew addition unit; and a FFT operation unit. The 90-degree hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs multiple optical signals separated into a plurality of signal components. The optoelectronic converter detects the optical signal and outputs a detected electrical signal. The analog-to-digital converter digitizes the detected electrical signal and outputs a detected digital signal. The skew addition unit adds to the detected digital signal an additional skew amount whose absolute value is equal to, whose sign is opposite to a skew amount of a difference in propagation delay in each lane connected to each output channel of the 90-degree hybrid circuit. The FFT operation unit performs a fast Fourier transform on the output from the skew addition unit.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 10, 2013
    Applicant: NEC CORPORATION
    Inventors: Kiyoshi Fukuchi, Junichi Abe, Wakako Yasuda
  • Publication number: 20130216240
    Abstract: A coherent light receiving device includes a coherent receiving unit which mixes a received optical signal with local light and performs optical coherent detection to output a digital signal, a wavelength dispersion compensation unit which compensates for waveform distortion in the digital signal and outputs a digital signal after compensation, and a frequency difference detection unit which detects the frequency difference between the received optical signal and local light and notifies the wavelength dispersion compensation unit of the frequency difference, wherein the wavelength dispersion compensation unit performs compensation using a transfer function which is based on the frequency difference notified from the frequency difference detection unit and represents waveform distortion due to wavelength dispersion.
    Type: Application
    Filed: October 6, 2011
    Publication date: August 22, 2013
    Applicant: NEC CORPORATION
    Inventor: Kiyoshi Fukuchi
  • Patent number: 8515293
    Abstract: A coherent receiver 1 assigns a first transmission signal to first transmission polarization, assigns a second transmission signal to second transmission polarization, and receives a quadrature multiplexed signal formed by applying quadrature multiplexing to the first transmission polarization and the second transmission polarization.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: August 20, 2013
    Assignee: NEC Corporation
    Inventors: Wakako Yasuda, Daisaku Ogasahara, Kiyoshi Fukuchi
  • Patent number: 8472812
    Abstract: Transmission-side communication apparatus 100 using a DQPSK (differential quadrature phase-shift keying) scheme is provided with: optical carrier generation section 102 which generates an optical carrier the frequency of which switches among a plurality of different frequencies within one symbol period; and modulation section 103 with which DQPSK-modulates the optical carrier generated by the optical carrier generation means in accordance with a modulation signal at an interval of the symbol period. There are provided: single delay interference section 121 which receives an optical signal obtained by DQPSK-modulating an optical carrier the frequency of which switches among a plurality of different frequencies within one symbol period and outputs an output light obtained by causing the optical signal 104 and a delay optical signal thereof to interfere with each other; and photoelectric conversion section 124 which converts the output light outputted by the delay interference means to an electric signal.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: June 25, 2013
    Assignee: NEC Corporation
    Inventors: Satomi Shioiri, Toshiharu Ito, Kiyoshi Fukuchi
  • Publication number: 20130051790
    Abstract: In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an interchannel skew arises, therefore, a coherent optical receiver according to an exemplary aspect of the invention includes a local light source; a 90-degree hybrid circuit; an optoelectronic converter; an analog-to-digital converter; and a digital signal processing unit, wherein the 90-degree hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs a plurality of optical signals separated into a plurality of signal components; the optoelectronic converter detects the optical signals and outputs detected electrical signals; the analog-to-digital converter quantizes the detected electrical signals and outputs quantized signals; and the digital signal processing unit includes a skew compensation unit for compensating a difference in propagation delay between the plurality of signal components, and a demodulation unit for dem
    Type: Application
    Filed: May 13, 2011
    Publication date: February 28, 2013
    Applicant: NEC CORPORATION
    Inventors: Wakako Yasuda, Junichi Abe, Kiyoshi Fukuchi
  • Patent number: 8346099
    Abstract: The present invention converts each of the optical differential signals from DPSK demodulator from an optical signal into an electrical signal by using optical-electrical signal converters. Thereafter, each electrical signal is subjected to amplification adjustment at an appropriate amplification factor by variable amplifier, and an appropriate delay amount is added to each electrical signal by variable delay line, and thereafter data discrimination is performed by discriminator. Since two differential signals after DPSK demodulation are subjected to amplitude and delay adjustments, the need for optical parts is obviated enabling the use of electric circuits which can be integrated. Thus, the cost of the optical reception device will be reduced. Moreover, the since electric signals whose phases and amplitudes are equalized are inputted to discriminator, erroneous determination of data at discriminator will be reduced.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: January 1, 2013
    Assignee: NEC Corporation
    Inventors: Satomi Shioiri, Kiyoshi Fukuchi
  • Patent number: 8320779
    Abstract: A receiver includes wavelength demultiplexer for demultiplexing a received WDM light into light signals at respective central frequencies thereof, delay interferometer for converting a light signal output from wavelength demultiplexer into an intensity signal, and light detector for converting an output signal from delay interferometer into an electric signal. The interval between interferential frequencies of delay interferometer is 2/(2n+1) times the interval between the central frequencies of the WDM light. Logic inverting circuit outputs the output signal from the light detector while non-inverting or inverting the logic level thereof depending on the received central frequency.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: November 27, 2012
    Assignee: NEC Corporation
    Inventors: Kiyoshi Fukuchi, Toshiharu Ito
  • Publication number: 20120281981
    Abstract: A method of monitoring chromatic dispersion when transmitting an optical signal includes: applying, to an optical signal in which the symbol rate is f, a dip in optical intensity for every n symbols by means of pseudo-RZ modulation where n is an integer equal to or greater than 2, and transmitting the optical signal to which dips have been applied to a transmission path; receiving the optical signal that is transmitted in by the transmission path and detecting the intensity of a frequency component of k*f/n from the received signal where k is an integer equal to or greater than 1; and based on the detected intensity, generating a monitor signal that represents the chromatic dispersion amount.
    Type: Application
    Filed: January 5, 2011
    Publication date: November 8, 2012
    Applicant: NEC CORPORATION
    Inventors: Emmanuel Le Taillandier De Gabory, Manabu Arikawa, Kiyoshi Fukuchi
  • Publication number: 20120237202
    Abstract: In a coherent optical receiver, sufficient demodulation becomes impossible and consequently receiving performance deteriorates if an inter-channel skew arises, therefore, a coherent optical receiver according to an exemplary aspect of the invention includes a local light source, a 90° hybrid circuit, an optoelectronic converter, an analog to digital converter, and a digital signal processing unit; wherein the 90° hybrid circuit makes multiplexed signal light interfere with local light from the local light source, and outputs a plurality of optical signals separated into a plurality of signal components; the optoelectronic converter detects the optical signals and outputs detected electrical signals; the analog to digital converter quantizes the detected electrical signals and outputs quantized signals; the digital signal processing unit includes a skew compensation unit for compensating a difference in propagation delay between the plurality of signal components, and an FFT operation unit for performing a fas
    Type: Application
    Filed: September 2, 2011
    Publication date: September 20, 2012
    Applicant: NEC CORPORATION
    Inventors: Junichi Abe, Wakako Yasuda, Kiyoshi Fukuchi
  • Patent number: 8204387
    Abstract: The optical modulator comprises an optical branching unit branching incident light into a first signal light and a second signal light; a first Mach-Zehnder modulator modulating the first signal light; a second Mach-Zehnder modulator modulating the second signal light; a phase shifter giving a fixed phase shift to the phase of the output light from the second Mach-Zehnder modulator; and an optical multiplexer multiplexing the output light from the first Mach-Zehnder modulator and the output light from the phase shifter. The phase shifter gives the phase shift so that the two input lights to the optical multiplexer have a phase difference of 60 degrees, and the first and second Mach-Zehnder modulators are driven by three-level signals.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: June 19, 2012
    Assignee: NEC Corporation
    Inventor: Kiyoshi Fukuchi
  • Patent number: 8165477
    Abstract: The present invention provides a light receiving apparatus using the DQPSK demodulation method. The light receiving apparatus comprises: one Mach-Zehnder interferometer for branching a received light signal into light signals at two arms to allow the branched two light signals to interfere with each other; one balanced photoelectric converter for converting the two interfered light signals, by using the Mach-Zehnder interferometer, into an electric signal corresponding to a difference between light intensities of the two light signals; and a phase adjuster for dynamically shifting the phase of a light signal passed through one of the two arms at the Mach-Zehnder interferometer.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 24, 2012
    Assignee: NEC Corporation
    Inventors: Satomi Shioiri, Kiyoshi Fukuchi, Toshiharu Ito, Hitoshi Takeshita
  • Publication number: 20120082464
    Abstract: With respect to a coherent optical receiving apparatus, a polarization multiplexing light signal, whereupon a first signal is placed upon a first polarized wave light and a second signal is placed upon a second polarized wave light, is polarization divided upon the transmitting side thereof, and the first signal and the second signal cannot be received in correspondence with the transmitting side. Accordingly, disclosed is a coherent optical receiving apparatus, comprising a coherent light receiving unit that detects coherent light, and a signal processing unit that carries out signal processing that is set with control coefficients. The coherent light receiving unit receives a first polarized light that is modulated with a first transmitted signal and outputs a first detected signal, and simultaneously receives the first polarized light with a second polarized light that is modulated with a second transmitted signal, and outputs a second detected signal.
    Type: Application
    Filed: December 24, 2010
    Publication date: April 5, 2012
    Applicant: NEC CORPORATION
    Inventors: Wakako Yasuda, Kiyoshi Fukuchi, Daisaku Ogasahara
  • Publication number: 20120045208
    Abstract: A coherent receiver 1 assigns a first transmission signal to first transmission polarization, assigns a second transmission signal to second transmission polarization, and receives a quadrature multiplexed signal formed by applying quadrature multiplexing to the first transmission polarization and the second transmission polarization.
    Type: Application
    Filed: April 21, 2010
    Publication date: February 23, 2012
    Inventors: Wakako Yasuda, Daisaku Ogasahara, Kiyoshi Fukuchi