Patents by Inventor Ko Nozaki

Ko Nozaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9475480
    Abstract: A battery charge/discharge control device (20) includes an input-enabled power adjustment unit (40) having an input-enabled current value calculation unit (42) and an input power limit value calculation unit (44). The input-enabled current value calculation unit (42) uses a battery current value, a battery temperature value, and an estimated charge capacity value at the time “t” upon execution of detection, so as to obtain an input-enabled current value reduction amount per unit time during charge and an enabled current amount recovery amount per unit time when being left uncontrolled.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: October 25, 2016
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Teruo Ishishita, Junta Izumi, Ko Nozaki, Hitoshi Sakai, Takashi Kuzuya, Kiyohito Machida
  • Publication number: 20110127958
    Abstract: A battery charge/discharge control device (20) includes an input-enabled power adjustment unit (40) having an input-enabled current value calculation unit (42) and an input power limit value calculation unit (44). The input-enabled current value calculation unit (42) uses a battery current value, a battery temperature value, and an estimated charge capacity value at the time “t” upon execution of detection, so as to obtain an input-enabled current value reduction amount per unit time during charge and an enabled current amount recovery amount per unit time when being left uncontrolled.
    Type: Application
    Filed: July 10, 2009
    Publication date: June 2, 2011
    Inventors: Teruo Ishishita, Junta Izumi, Ko Nozaki, Hitoshi Sakai, Takashi Kuzuya, Kiyohito Machida
  • Patent number: 7332248
    Abstract: A method of manufacturing a non-aqueous electrolyte secondary battery is provided wherein the positive electrode is made from a lithium-metal composite oxide represented by the general formula Lix(Ni1-y, Coy)1-zMzO2 (0.98?x?1.10, 0.05?y?0.4, 0.01?z?0.2, in which M represents at least one element selected from the group consisting of Al, Mg, Mn, Ti, Fe, Cu, Zn and Ga), and having an average particle diameter of 5 ?m to 10 ?m a C-amount of 0.14 wt % or less measured by way of the high-frequency heating-IR absorption method, and a Karl Fischer moisture content of 0.2 wt % or less when heated to 180° C. and the method comprising the steps of applying a paste of active material for positive electrode to electrode plate to make an electrode, then drying the electrode, and pressing and then installing the electrode in a battery, in a work atmosphere having an absolute moisture content of 10 g/m3 or less.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: February 19, 2008
    Assignees: Sumitomo Metal Mining Co., Ltd., Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Katsuya Kase, Shigeki Kubo, Hirofumi Iisaka, Ko Nozaki, Satoru Suzuki, Manabu Yamada
  • Publication number: 20040180263
    Abstract: A method of manufacturing a non-aqueous electrolyte secondary battery is provided wherein the positive electrode is made from a lithium-metal composite oxide represented by the general formula Lix(Ni1-y, Coy)1-zMzO2 (0.98≦x≦1.10, 0.05≦y≦0.4, 0.01≦z≦0.2, in which M represents at least one element selected from the group consisting of Al, Mg, Mn, Ti, Fe, Cu, Zn and Ga), and having an average particle diameter of 5 &mgr;m to 10 &mgr;m a C-amount of 0.14 wt % or less measured by way of the high-frequency heating-IR absorption method, and a Karl Fischer moisture content of 0.2 wt % or less when heated to 180° C. and the method comprising the steps of applying a paste of active material for positive electrode to electrode plate to make an electrode, then drying the electrode, and pressing and then installing the electrode in a battery, in a work atmosphere having an absolute moisture content of 10 g/m3 or less.
    Type: Application
    Filed: December 19, 2003
    Publication date: September 16, 2004
    Inventors: Katsuya Kase, Shigeki Kubo, Hirofumi Iisaka, Ko Nozaki, Satoru Suzuki, Manabu Yamada
  • Patent number: 5883496
    Abstract: To obtain an electric vehicle power supply 10 having a high output power density and regenerative power density, and which is compact and lightweight wherein a first battery 12 whose regenerative power density increases with decrease of the SOC and a second battery 14 whose output power density increases with increase of the SOC are used as an electrical storage device, and control is performed so that the SOC of the first battery 12 is maintained low while the SOC of the second battery 14 is maintained high. The regenerative power density of the first battery 12 is therefore high, the regeneration current from the motor 32 is mainly stored by the first battery 12, and the force used to drive the motor 32 is mainly output by the second battery 14 which has a high output power density.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: March 16, 1999
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Esaki, Ko Nozaki