Patents by Inventor Kohei Nakayama

Kohei Nakayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11171253
    Abstract: A solar cell of an embodiment includes: a first electrode; a second electrode; a light-absorbing layer interposed between the first electrode and the second electrode; a dot region interposed between the first electrode and the light-absorbing layer, the dot region including dots.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: November 9, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Soichiro Shibasaki, Miyuki Shiokawa, Sara Yoshio, Naoyuki Nakagawa, Yukitami Mizuno, Kohei Nakayama, Mutsuki Yamazaki, Yoshiko Hiraoka, Kazushige Yamamoto, Yuya Honishi, Takeshi Niimoto
  • Patent number: 11125895
    Abstract: According to an embodiment, a detection element includes a first electrode, a second electrode, an organic conversion layer, and a third electrode. The organic conversion layer is provided between the first electrode and the second electrode, and is configured to convert energy of a radiant ray into a charge. The third electrode is provided inside the organic conversion layer. Bias is applied to the third electrode.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: September 21, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kohei Nakayama, Fumihiko Aiga, Go Kawata, Isao Takasu, Yuko Nomura, Satomi Taguchi, Hyangmi Jung, Atsushi Wada, Rei Hasegawa
  • Patent number: 11037993
    Abstract: A detection device according to an embodiment of the present disclosure includes a plurality of semiconductor layers, each including a plurality of electrode regions and a semiconductor region. The plurality of electrode regions are: arranged at intervals in a cross direction crossing a thickness direction; configured to generate electric charges by a photoelectric effect of irradiation of radiation; and configured to produce an electric field in the cross direction by voltage application. The semiconductor region is provided at least between the electrode regions adjacent to one another in the cross direction. The plurality of semiconductor layers are stacked in the thickness direction.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: June 15, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kohei Nakayama, Fumihiko Aiga, Atsushi Wada, Isao Takasu, Yuko Nomura, Sara Yoshio, Rei Hasegawa
  • Publication number: 20210055435
    Abstract: According to one embodiment, a radiation detector includes a first layer including a metal complex, a first conductive layer, a second conductive layer provided between the first layer and the first conductive layer, and an organic semiconductor layer provided between the first conductive layer and the second conductive layer.
    Type: Application
    Filed: March 11, 2020
    Publication date: February 25, 2021
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Fumihiko AIGA, Atsushi WADA, Kohei NAKAYAMA, Yuko NOMURA, Sara YOSHIO, Rei HASEGAWA, lsao TAKASU
  • Patent number: 10930861
    Abstract: According to one embodiment, a radiation detector includes a detection element. The detection element includes a first conductive layer, a second conductive layer, and an organic semiconductor layer provided between the first conductive layer and the second conductive layer. The organic semiconductor layer includes a first compound and a second compound. The first compound is bipolar. A thickness of the organic semiconductor layer is 50 ?m or more.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: February 23, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Isao Takasu, Hyangmi Jung, Kohei Nakayama, Yuko Nomura, Rei Hasegawa
  • Patent number: 10901100
    Abstract: According to an embodiment, a radiation detector includes a plurality of absorbers, a resistor, and a heat bath member. The absorbers absorb radiation. The resistor undergoes a change in resistance according to a change in temperature of the absorbers. The heat bath member is maintained at a temperature at which resistance of the resistor becomes equal to a specific resistance value, and is positioned to be in thermal contact with the resistor. The absorbers are positioned to be in contact with the resistor, and are arranged at a distance from each other.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: January 26, 2021
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kohei Nakayama
  • Publication number: 20200395415
    Abstract: A detection device according to an embodiment of the present disclosure includes a plurality of semiconductor layers, each including a plurality of electrode regions and a semiconductor region. The plurality of electrode regions are: arranged at intervals in a cross direction crossing a thickness direction; configured to generate electric charges by a photoelectric effect of irradiation of radiation; and configured to produce an electric field in the cross direction by voltage application. The semiconductor region is provided at least between the electrode regions adjacent to one another in the cross direction. The plurality of semiconductor layers are stacked in the thickness direction.
    Type: Application
    Filed: February 28, 2020
    Publication date: December 17, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kohei NAKAYAMA, Fumihiko Aiga, Atsushi Wada, Isao Takasu, Yuko Nomura, Sara Yoshio, Rei Hasegawa
  • Patent number: 10761222
    Abstract: According to an embodiment, a detection element includes a first electrode, a second electrode, an organic conversion layer, and a third electrode. A bias is applied to the first electrode. The organic conversion layer is arranged between the first electrode and the second electrode, and is configured to convert energy of a radiation into an electric charge. The third electrode is arranged in the organic conversion layer.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: September 1, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kohei Nakayama, Fumihiko Aiga, Go Kawata, Isao Takasu, Yuko Nomura, Satomi Taguchi, Hyangmi Jung, Atsushi Wada, Rei Hasegawa
  • Patent number: 10714699
    Abstract: According to an embodiment, a detecting element includes a first electrode, a second electrode, an organic conversion layer, a third electrode. The first electrode and the third electrode are configured to keep different potentials by DC power supply. The organic conversion layer is disposed in between the first electrode and the second electrode, and is configured to convert energy of radiation into electrical charge. The third electrode is disposed at least either in the organic conversion layer, or in between the organic conversion layer and the first electrode, or in between the organic conversion layer and the second electrode, and is at least partially covered by an insulating film.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: July 14, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kohei Nakayama
  • Publication number: 20200091440
    Abstract: According to one embodiment, a radiation detector includes a detection element. The detection element includes a first conductive layer, a second conductive layer, and an organic semiconductor layer provided between the first conductive layer and the second conductive layer. The organic semiconductor layer includes a first compound and a second compound. The first compound is bipolar. A thickness of the organic semiconductor layer is 50 ?m or more.
    Type: Application
    Filed: March 5, 2019
    Publication date: March 19, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Isao TAKASU, Hyangmi JUNG, Kohei NAKAYAMA, Yuko NOMURA, Rei HASEGAWA
  • Publication number: 20200091452
    Abstract: According to an embodiment, a detecting element includes a first electrode, a second electrode, an organic conversion layer, a third electrode. The first electrode and the third electrode are configured to keep different potentials by DC power supply. The organic conversion layer is disposed in between the first electrode and the second electrode, and is configured to convert energy of radiation into electrical charge. The third electrode is disposed at least either in the organic conversion layer, or in between the organic conversion layer and the first electrode, or in between the organic conversion layer and the second electrode, and is at least partially covered by an insulating film.
    Type: Application
    Filed: March 8, 2019
    Publication date: March 19, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kohei Nakayama
  • Publication number: 20200083298
    Abstract: According to one embodiment, a radiation detector includes a first member, a first electrode, a second electrode, and an organic photoelectric conversion layer. The first member converts radiation into light and has a first surface. The first surface includes a first portion and a second portion. The first electrode is provided at the first portion. The second electrode is provided at the second portion. A first intermediate region of the organic photoelectric conversion layer is provided between the first electrode and the second electrode.
    Type: Application
    Filed: March 11, 2019
    Publication date: March 12, 2020
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Rei Hasegawa, Kohei Nakayama, Isao Takasu
  • Publication number: 20200033490
    Abstract: According to an embodiment, a radiation detector includes a plurality of absorbers, a resistor, and a heat bath member. The absorbers absorb radiation. The resistor undergoes a change in resistance according to a change in temperature of the absorbers. The heat bath member is maintained at a temperature at which resistance of the resistor becomes equal to a specific resistance value, and is positioned to be in thermal contact with the resistor. The absorbers are positioned to be in contact with the resistor, and are arranged at a distance from each other.
    Type: Application
    Filed: March 8, 2019
    Publication date: January 30, 2020
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kohei NAKAYAMA
  • Publication number: 20190285759
    Abstract: According to an embodiment, a detection element includes a first electrode, a second electrode, an organic conversion layer, and a third electrode. The organic conversion layer is provided between the first electrode and the second electrode, and is configured to convert energy of a radiant ray into a charge. The third electrode is provided inside the organic conversion layer. Bias is applied to the third electrode.
    Type: Application
    Filed: September 6, 2018
    Publication date: September 19, 2019
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kohei NAKAYAMA, Fumihiko AIGA, Go KAWATA, lsao TAKASU, Yuko NOMURA, Satomi TAGUCHI, Hyangmi JUNG, Atsushi WADA, Rei HASEGAWA
  • Patent number: 10408953
    Abstract: According to one embodiment, a radiation detector includes a metal member, a capacitor, and a first charge-sensitive amplifier. The metal member includes a first portion and a second portion. The capacitor is electrically connected to the second portion. The first charge-sensitive amplifier is electrically connected to the first portion. The first charge-sensitive amplifier outputs a signal corresponding to ?-rays incident on the metal member.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: September 10, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Rei Hasegawa, Kohei Nakayama
  • Publication number: 20190265370
    Abstract: According to an embodiment, a detection element includes a first electrode, a second electrode, an organic conversion layer, and a third electrode. A bias is applied to the first electrode. The organic conversion layer is arranged between the first electrode and the second electrode, and is configured to convert energy of a radiation into an electric charge. The third electrode is arranged in the organic conversion layer.
    Type: Application
    Filed: September 5, 2018
    Publication date: August 29, 2019
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kohei Nakayama, Fumihiko Aiga, Go Kawata, Isao Takasu, Yuko Nomura, Satomi Taguchi, Hyangmi Jung, Atsushi Wada, Rei Hasegawa
  • Publication number: 20190257960
    Abstract: According to one embodiment, a radiation detector includes a metal member, a capacitor, and a first charge-sensitive amplifier. The metal member includes a first portion and a second portion. The capacitor is electrically connected to the second portion. The first charge-sensitive amplifier is electrically connected to the first portion. The first charge-sensitive amplifier outputs a signal corresponding to ?-rays incident on the metal member.
    Type: Application
    Filed: August 31, 2018
    Publication date: August 22, 2019
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Rei Hasegawa, Kohei Nakayama
  • Patent number: 10205211
    Abstract: A thermal insulation waveguide between a high-temperature unit and a low-temperature unit in a vacuum, chamber of an embodiment, the thermal insulation waveguide includes, a first substrate including a first line in the high-temperature unit, a second substrate including a second line in the low temperature unit, and a thermal insulation element connecting the substrates, and including a third line including an inductance component and connecting the first and second lines. The first substrate includes a first capacitor unit connected with the first line. The second substrate includes a second capacitor unit connected with the second line.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: February 12, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tamio Kawaguchi, Noritsugu Shiokawa, Hiroaki Ikeuchi, Tadahiro Sasaki, Kohei Nakayama, Mutsuki Yamazaki, Hiroyuki Kayano
  • Publication number: 20180083150
    Abstract: A solar cell of an embodiment includes: a first electrode; a second electrode; a light-absorbing layer interposed between the first electrode and the second electrode; a dot region interposed between the first electrode and the light-absorbing layer, the dot region including dots.
    Type: Application
    Filed: August 31, 2017
    Publication date: March 22, 2018
    Inventors: Soichiro Shibasaki, Miyuki Shiokawa, Sara Yoshio, Naoyuki Nakagawa, Yukitami Mizuno, Kohei Nakayama, Mutsuki Yamazaki, Yoshiko Hiraoka, Kazushige Yamamoto, Yuya Honishi, Takeshi Niimoto
  • Publication number: 20170077580
    Abstract: A thermal insulation waveguide between a high-temperature unit and a low-temperature unit in a vacuum, chamber of an embodiment, the thermal insulation waveguide includes, a first substrate including a first line in the high-temperature unit, a second substrate including a second line in the low temperature unit, and a thermal insulation element connecting the substrates, and including a third line including an inductance component and connecting the first and second lines. The first substrate includes a first capacitor unit connected with the first line. The second substrate includes a second capacitor unit connected with the second line.
    Type: Application
    Filed: September 8, 2016
    Publication date: March 16, 2017
    Inventors: Tamio KAWAGUCHI, Noritsugu SHIOKAWA, Hiroaki IKEUCHI, Tadahiro SASAKI, Kohei NAKAYAMA, Mutsuki YAMAZAKI, Hiroyuki KAYANO