Patents by Inventor Koichi Murakami

Koichi Murakami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965857
    Abstract: A vibrator that is capable of vibrating without using an electrode and has good detection sensitivity is provided. A carbon-based material vibrator for vibration by light irradiation has a biological substance or a substance capable of identifying a biological substance immobilized on the vibrator. The vibrator may not include a counter electrode for applying a voltage to the vibrator. The carbon-based material may be graphite. A thermal conductivity ?1 in a plane direction of the carbon-based material is 100 times or more than a thermal conductivity ?2 in a thickness direction of the carbon-based material.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: April 23, 2024
    Assignees: KANEKA CORPORATION, OSAKA UNIVERSITY
    Inventors: Kensuke Murashima, Mutsuaki Murakami, Hirotsugu Ogi, Koichi Kusakabe
  • Patent number: 11956662
    Abstract: A wireless communication system in which wireless stations perform transmission, a plurality of wireless modules that are operated in a shared frequency band being installed in the wireless stations, wherein the wireless stations each include means for notifying a control device of environment information that includes capacity information regarding the wireless station and information regarding a surrounding wireless environment, and setting frequency channels in the plurality of wireless modules, the wireless stations being notified of the frequency channels by the control device, and the control device includes means for calculating a frequency channel of each wireless module of each wireless station based on the environment information collected from each wireless station, following a control guideline that is determined in advance, and notifying the wireless stations of the frequency channels.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: April 9, 2024
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Toshiro Nakahira, Hirantha Abeysekera, Tomoki Murakami, Koichi Ishihara, Takafumi Hayashi, Yasushi Takatori
  • Patent number: 11950115
    Abstract: A measurement station collects radio base station performance information related to a radio communication performance of each radio base station, radio connection information related to a radio communication performance and a communication status of a corresponding radio terminal station, generates a measurement condition and an expected measurement result based on the radio base station performance information and the radio connection information, and notifies a measurement control signal corresponding to the measurement condition to the radio terminal station through the radio base station; the radio terminal station performs a communication setting of an own station based on the notified measurement control signal, and notifies a measurement preparation status to the measurement station; and the measurement station measures the radio communication performance by causing a flow of a measurement traffic to the radio terminal station through the radio base station, acquiring a measurement result, and determi
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: April 2, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Toshiro Nakahira, Tomoki Murakami, Hirantha Abeysekera, Koichi Ishihara, Takafumi Hayashi, Yasushi Takatori
  • Patent number: 11920076
    Abstract: A fire retardant material comprising a carbon fiber which tensile elasticity is 700 GPa or more, and a fire retardant resin such as polycarbonate.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: March 5, 2024
    Assignee: TOKYO UNIVERSITY OF SCIENCE FOUNDATION
    Inventors: Koichi Yonemoto, Kiyoto Murakami, Satoshi Nonaka
  • Patent number: 11917455
    Abstract: The invention of the present application provides a transmission parameter control method in a radio communication system that performs, between a radio base station and a plurality of radio terminal stations, communication of a first method in which reception confirmation is enabled and communication of a second method in which reception confirmation is not possible. The radio base station selects transmission parameters including a transmission rate in the communication of the second method with the radio terminal stations, based on radio communication information in the communication of the first method with the radio terminal stations.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: February 27, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Toshiro Nakahira, Tomoki Murakami, Hirantha Abeysekera, Koichi Ishihara, Takafumi Hayashi, Yasushi Takatori
  • Patent number: 11917454
    Abstract: A wireless communications method for connecting a base station with each of a plurality of terminal stations, the base station being equipped with a plurality of wireless communications units configured to be able to select a plurality of different transmission rates and connectable with one or more of the terminal stations, includes: a collection step of collecting information about a transmission rate and multicast transmission frequency from each of the terminal stations; a policy calculation step of calculating a setting policy for setting a unicast transmission rate and a multicast transmission rate for each of the wireless communications units and a switching policy for setting a condition for switching that one of the wireless communications units which is to be connected, for each of the terminal stations based on the collected information; and a setting step of setting those of the terminal stations which are to be connected, for each of the wireless communications units based on the calculated setti
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: February 27, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Toshiro Nakahira, Tomoki Murakami, Hirantha Abeysekera, Koichi Ishihara, Takafumi Hayashi, Yasushi Takatori
  • Publication number: 20230420453
    Abstract: A semiconductor device includes a semiconductor substrate and a lower electrode. The semiconductor substrate includes a collector region of p-type and a cathode region of n-type being in contact with the lower electrode. The semiconductor substrate has an insulated gate bipolar transistor range overlapping with the collector region when viewed along a thickness direction of the semiconductor substrate, and a diode range overlapping with the cathode region when viewed along the thickness direction of the semiconductor substrate. The semiconductor substrate further includes a buffer region of n-type being in contact with upper surfaces of the collector region and the cathode region, a drift region of n-type being in contact with an upper surface of the buffer region, and a current limiting region of p-type disposed above a boundary between the collector region and the cathode region and being in contact with an upper surface of the buffer region.
    Type: Application
    Filed: September 11, 2023
    Publication date: December 28, 2023
    Inventor: Koichi MURAKAMI
  • Patent number: 11843048
    Abstract: A MOSFET includes: a semiconductor base substrate having an n-type column region and a p-type column region, the n-type column region and the p-type column region forming a super junction structure; and a gate electrode formed by way of a gate insulation film. Assuming a region of the semiconductor base substrate which provides a main operation of the MOSFET as an active region, a region of the semiconductor base substrate maintaining a withstand voltage of the MOSFET as an outer peripheral region, and a region of the semiconductor base substrate disposed between the active region and the outer peripheral region as an active connecting region, out of the active region, the active connecting region, and the outer peripheral region of the semiconductor base substrate, the crystal defects are formed only in the active region and the active connecting region.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: December 12, 2023
    Assignee: SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventors: Daisuke Arai, Mizue Kitada, Takeshi Asada, Noriaki Suzuki, Koichi Murakami
  • Publication number: 20230367230
    Abstract: An exposure apparatus includes: light source that emits exposure light; exposure pattern forming apparatus including a plurality of exposure elements and disposed on an optical path of at least part of exposure light; and control unit electrically connected to exposure pattern forming apparatus, in which control unit controls whether workpiece is irradiated with exposure light via each of exposure elements by switching each of exposure elements to a first or second state, and integrates exposure amount in predetermined region of scheduled exposure region by sequentially irradiating predetermined region with light of part of exposure light via a first exposure element in first state among plurality of exposure elements and light of part of exposure light via second exposure element in the first state different from the first exposure element among the plurality of exposure elements in accordance with a relative movement of the workpiece and the exposure pattern forming apparatus.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 16, 2023
    Applicant: NIKON CORPORATION
    Inventors: Koichi MURAKAMI, Koutarou TAKIGAMI, Tetsuya ABE
  • Publication number: 20230288238
    Abstract: The sensor of a fluid sensor system includes an outer peripheral sensor unit including three or more sensor pairs to surround and sandwich the heating element. The computing device of the system includes a first identification unit identifies a sensor pair in which an output difference between an output value corresponding to a temperature detected by one temperature sensor of the sensor pair and an output value corresponding to a temperature detected by the other temperature sensor of the sensor pair is largest, a second identification unit identifies other sensor pairs adjacent to the identified sensor pair in the circumferential direction, and a flow direction estimation unit estimates the flow direction of the fluid on the basis of the output difference in the sensor pair having the largest output difference and output differences in the other sensor pairs adjacent to the sensor pair in the circumferential direction.
    Type: Application
    Filed: February 28, 2023
    Publication date: September 14, 2023
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., Tokyo University of Science Foundation
    Inventors: Shunsuke MIZUMI, Naoto OMURA, Masahiro MOTOSUKE, Daiki SHIRAISHI, Koichi MURAKAMI
  • Patent number: 11548827
    Abstract: Provided is a member for a plasma processing apparatus consisting of a tungsten carbide phase. The member includes at least one type of atom selected from the group consisting of a Fe atom, a Co atom, and a Ni atom, in which the total content of the atoms is in a range of 30 to 3300 atomic ppm.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: January 10, 2023
    Assignees: NIPPON TUNGSTEN CO., LTD., TOKYO ELECTRON LIMITED
    Inventors: Takashi Ikeda, Hajime Ishii, Kenji Fujimoto, Naoyuki Satoh, Nobuyuki Nagayama, Koichi Murakami, Takahiro Murakami
  • Patent number: 11434174
    Abstract: A member for a plasma processing apparatus has a tungsten carbide phase, and a sub-phase including at least one selected from the group consisting of phase I to IV, and phase V, in which the phase I is a carbide phase containing, as a constituent element, at least one of the elements of Group IV, V, and VI of the periodic table excluding W, the phase II is a nitride phase containing, as a constituent element, at least one of the elements of Group IV, V, and VI of the periodic table excluding W, the phase III is a carbonitride phase containing, as a constituent element, at least one of the elements of Group IV, Group V, and Group VI of the periodic table excluding W, the phase IV is a carbon phase, the phase V is a composite carbide phase which is represented by a formula WxMyCz.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: September 6, 2022
    Assignees: NIPPON TUNGSTEN CO., LTD., TOKYO ELECTRON LIMITED
    Inventors: Takashi Ikeda, Hajime Ishii, Kenji Fujimoto, Naoyuki Satoh, Nobuyuki Nagayama, Koichi Murakami, Takahiro Murakami
  • Publication number: 20220246755
    Abstract: A MOSFET includes: a semiconductor base substrate having an n-type column region and a p-type column region, the n-type column region and the p-type column region forming a super junction structure; and a gate electrode formed by way of a gate insulation film. Assuming a region of the semiconductor base substrate which provides a main operation of the MOSFET as an active region, a region of the semiconductor base substrate maintaining a withstand voltage of the MOSFET as an outer peripheral region, and a region of the semiconductor base substrate disposed between the active region and the outer peripheral region as an active connecting region, out of the active region, the active connecting region, and the outer peripheral region of the semiconductor base substrate, the crystal defects are formed only in the active region and the active connecting region.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 4, 2022
    Inventors: Daisuke ARAI, Mizue KITADA, Takeshi ASADA, Noriaki SUZUKI, Koichi MURAKAMI
  • Patent number: 11404251
    Abstract: A cooling table includes a first portion, a second portion, a first path, a second path and a third path. An electrostatic chuck is provided on the first portion, and the first portion is provided on the second portion. The first path is provided within the first portion, and the second path is provided within the second portion. The third path is connected to the first path and the second path. A chiller unit is connected to the first path and the second path. The first path is extended within the first portion along the electrostatic chuck, and the second path is extended within the second portion along the electrostatic chuck. A coolant outputted from the chiller unit passes through the first path, the third path and the second path in sequence, and then is inputted to the chiller unit.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: August 2, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Shin Yamaguchi, Akiyoshi Mitsumori, Takehiko Arita, Koichi Murakami
  • Patent number: 11342452
    Abstract: A MOSFET includes: a semiconductor base substrate having an n-type column region and a p-type column region, the n-type column region and the p-type column region forming a super junction structure; and a gate electrode formed by way of a gate insulation film. Assuming a region of the semiconductor base substrate which provides a main operation of the MOSFET as an active region, a region of the semiconductor base substrate maintaining a withstand voltage of the MOSFET as an outer peripheral region, and a region of the semiconductor base substrate disposed between the active region and the outer peripheral region as an active connecting region, out of the active region, the active connecting region, and the outer peripheral region of the semiconductor base substrate, the crystal defects are formed only in the active region and the active connecting region.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: May 24, 2022
    Assignee: SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventors: Daisuke Arai, Mizue Kitada, Takeshi Asada, Noriaki Suzuki, Koichi Murakami
  • Patent number: 10818496
    Abstract: A MOSFET includes: a semiconductor base substrate having n-type column regions and p-type column regions, the n-type column regions and the p-type column regions forming a super junction structure; and a gate electrode which is formed on a first main surface side of the semiconductor base substrate by way of a gate insulation film, wherein crystal defects whose density is increased locally as viewed along a depth direction are formed in the n-type column regions and the p-type column regions, using the first main surface as a reference and assuming a depth to a deepest portion of the super junction structure as Dp, a depth at which density of the crystal defects exhibits a maximum value as Dd, and a half value width of density distribution of the crystal defects as W, a relationship of 0.25Dp?Dd<0.95Dp and a relationship of 0.05Dp<W<0.5Dp are satisfied.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: October 27, 2020
    Assignee: SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventors: Daisuke Arai, Mizue Kitada, Takeshi Asada, Noriaki Suzuki, Koichi Murakami
  • Publication number: 20200317583
    Abstract: Provided is a member for a plasma processing apparatus consisting of a tungsten carbide phase. The member includes at least one type of atom selected from the group consisting of a Fe atom, a Co atom, and a Ni atom, in which the total content of the atoms is in a range of 30 to 3300 atomic ppm.
    Type: Application
    Filed: March 25, 2020
    Publication date: October 8, 2020
    Inventors: Takashi IKEDA, Hajime ISHII, Kenji FUJIMOTO, Naoyuki SATOH, Nobuyuki NAGAYAMA, Koichi MURAKAMI, Takahiro MURAKAMI
  • Publication number: 20200317582
    Abstract: A member for a plasma processing apparatus has a tungsten carbide phase, and a sub-phase including at least one selected from the group consisting of phase I to IV, and phase V, in which the phase I is a carbide phase containing, as a constituent element, at least one of the elements of Group IV, V, and VI of the periodic table excluding W, the phase II is a nitride phase containing, as a constituent element, at least one of the elements of Group IV, V, and VI of the periodic table excluding W, the phase III is a carbonitride phase containing, as a constituent element, at least one of the elements of Group IV, Group V, and Group VI of the periodic table excluding W, the phase IV is a carbon phase, the phase V is a composite carbide phase which is represented by a formula WxMyCz.
    Type: Application
    Filed: March 25, 2020
    Publication date: October 8, 2020
    Inventors: Takashi IKEDA, Hajime ISHII, Kenji FUJIMOTO, Naoyuki SATOH, Nobuyuki NAGAYAMA, Koichi MURAKAMI, Takahiro MURAKAMI
  • Patent number: 10659636
    Abstract: Provided is an image forming apparatus including a charge processing section and an operation section that are brought closer in height to each other, thus improving the operability of a user. The image forming apparatus (100) includes a coin insertion processing section (110), an operation panel (120) and an electrophotography printer (130). The coin insertion processing section (110) is configured to accept money and then execute charge processing so as to permit image formation by the image forming apparatus (100). The operation panel (120) is configured to, when the coin insertion processing section (110) executes the charge processing, accept setting of image formation by the image forming apparatus (100). The electrophotography printer (130) is configured to form an image of the read image data based on setting at the operation panel (120). The coin insertion processing section (110) is disposed at a height equal to a height of the operation panel (120).
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: May 19, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventor: Koichi Murakami
  • Publication number: 20200119187
    Abstract: A MOSFET includes: a semiconductor base substrate having an n-type column region and a p-type column region, the n-type column region and the p-type column region forming a super junction structure; and a gate electrode formed by way of a gate insulation film. Assuming a region of the semiconductor base substrate which provides a main operation of the MOSFET as an active region, a region of the semiconductor base substrate maintaining a withstand voltage of the MOSFET as an outer peripheral region, and a region of the semiconductor base substrate disposed between the active region and the outer peripheral region as an active connecting region, out of the active region, the active connecting region, and the outer peripheral region of the semiconductor base substrate, the crystal defects are formed only in the active region and the active connecting region.
    Type: Application
    Filed: December 27, 2017
    Publication date: April 16, 2020
    Inventors: Daisuke ARAI, Mizue KITADA, Takeshi ASADA, Noriaki SUZUKI, Koichi MURAKAMI