Patents by Inventor Koichi Nishikida

Koichi Nishikida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8521491
    Abstract: A method and corresponding apparatus provide correction of chemical images collected with a germanium hemisphere ATR microscope. A model is developed for rays passing through a simulated germanium (Ge) hemisphere attenuated total reflection (ATR) microscope. The model determines a data set for rays reaching the detector plane. Movement of the hemisphere is simulated along a first axis between each data set determination. A calculated background spectrum is produced by multiplying the percentage of rays by a background spectrum to produce a calculated background spectrum. A real Ge hemisphere ATR microscope having parameters that substantially match those of the simulated Ge hemisphere microscope is then used to collect a chemical image of a sample that is in contact with the Ge hemisphere. The collected image is then corrected to produce a corrected chemical image.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: August 27, 2013
    Assignee: Thermo Electron Scientific Instruments LLC
    Inventors: Francis J. Deck, Koichi Nishikida, Federico Izzia
  • Publication number: 20120259599
    Abstract: A method and corresponding apparatus provide correction of chemical images collected with a germanium hemisphere ATR microscope. A modeled is developed for rays passing through a simulated germanium (Ge) hemisphere attenuated total reflection (ATR) microscope. The model determines a data set for rays reaching the detector plane. Movement of the hemisphere is simulated along a first axis between each data set determination. A calculated background spectrum is produced by multiplying the percentage of rays by a background spectrum to produce a calculated background spectrum. A real Ge hemisphere ATR microscope having parameters that substantially match those of the simulated Ge hemisphere microscope is then used to collect a chemical image of a sample that is in contact with the Ge hemisphere. The collected image is then corrected to produce a corrected chemical image.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Inventors: Francis J. DECK, Federico IZZIA, Koichi Nishikida
  • Patent number: 7251085
    Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: July 31, 2007
    Assignee: Applera Corporation
    Inventors: Dar Bahatt, Jerry E. Cahill, Koichi Nishikida, Enrico G. Picozza, Paul G. Saviano, David H. Tracy, Yongdong Wang
  • Publication number: 20060262313
    Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).
    Type: Application
    Filed: July 28, 2006
    Publication date: November 23, 2006
    Applicant: Applera Corporation
    Inventors: Dar Bahatt, Jerry Cahill, Koichi Nishikida, Enrico Picozza, Paul Saviano, David Tracy, Yongdong Wang
  • Publication number: 20050162657
    Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).
    Type: Application
    Filed: March 7, 2005
    Publication date: July 28, 2005
    Applicant: Applera Corporation
    Inventors: Dar Bahatt, Jerry Cahill, Koichi Nishikida, Enrico Picozza, Paul Saviano, David Tracy, Yongdong Wang
  • Patent number: 6873417
    Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: March 29, 2005
    Assignee: Applera Corporation
    Inventors: Dar Bahatt, Jerry E. Cahill, Koichi Nishikida, Enrico G. Picozza, Paul G. Saviano, David H. Tracy, Yongdong Wang
  • Publication number: 20030210399
    Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).
    Type: Application
    Filed: April 28, 2003
    Publication date: November 13, 2003
    Applicant: Applera Corporation
    Inventors: Dar Bahatt, Jerry E. Cahill, Koichi Nishikida, Enrico G. Picozza, Paul G. Saviano, David H. Tracy, Yongdong Wang
  • Patent number: 6600563
    Abstract: An optical resonance analysis system comprising a sensor means (60) and an illumination means (400) for generating non-monochromatic illumination. The illumination means (400) further comprises a means for generating illumination at a plurality of angles, a lens system for projecting said illumination at said plurality of angles (390) and a dispersive device (380) for dispersing said illumination at each of said plurality of angles so that there is a correlation between said plurality of angles and the wavelengths of said illumination such that a resonance condition is generated on said sensor mean (60) for all wavelengths generated by said non-monochromatic source simultaneously. The analysis system also comprises a detection means (90) for detecting the reflected or transmitted illumination. Another embodiment comprises an anamorphic imaging means (120).
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: July 29, 2003
    Assignee: Applera Corporation
    Inventors: Dar Bahatt, Jerry E. Cahill, Koichi Nishikida, Enrico G. Picozza, Paul G. Saviano, David H. Tracy, Yongdong Wang
  • Patent number: 6430513
    Abstract: Constituents such as oxy- and deoxy-hemoglobin are monitored non-invasively in an animal organ such as a brain with a spectrometric instrument by passing radiation through the organ. Concentrations are computed from the spectral intensities and from a statistical correlation model. To predetermine the correlation model, the procedures are effected for a plurality of organs of a same type with each organ having established concentrations of the selected constituents, and the correlation model is statistically determined from the concentrations and corresponding intensities. For more accuracy computations are normalized to path length which may be determined by utilizing several discrete wavelengths with RF modulations.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: August 6, 2002
    Assignee: PerkinElmer Instruments LLC
    Inventors: Yongdong Wang, David H. Tracy, Paul G. Saviano, Alan M. Ganz, Koichi Nishikida, Gitesh Kumar