Patents by Inventor Konstantin Tsigutkin

Konstantin Tsigutkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230296533
    Abstract: A method of inspection for defects on a substrate, such as a reflective reticle substrate, and associated apparatuses. The method includes performing the inspection using inspection radiation obtained from a high harmonic generation source and having one or more wavelengths within a wavelength range of between 20 nm and 150 nm. Also, a method including performing a coarse inspection using first inspection radiation having one or more first wavelengths within a first wavelength range; and performing a fine inspection using second inspection radiation having one or more second wavelengths within a second wavelength range, the second wavelength range comprising wavelengths shorter than the first wavelength range.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 21, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Nitish KUMAR, Richard Quintanilha, Markus Gerardus Martinus Maria Van Kraaij, Konstantin Tsigutkin, Willem Marie Julia Marcel Coene
  • Patent number: 11692948
    Abstract: A method of inspection for defects on a substrate, such as a reflective reticle substrate, and associated apparatuses. The method includes performing the inspection using inspection radiation obtained from a high harmonic generation source and having one or more wavelengths within a wavelength range of between 20 nm and 150 nm. Also, a method including performing a coarse inspection using first inspection radiation having one or more first wavelengths within a first wavelength range; and performing a fine inspection using second inspection radiation having one or more second wavelengths within a second wavelength range, the second wavelength range comprising wavelengths shorter than the first wavelength range.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: July 4, 2023
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Nitish Kumar, Richard Quintanilha, Markus Gerardus Martinus Maria Van Kraaij, Konstantin Tsigutkin, Willem Marie Julia Marcel Coene
  • Patent number: 11635700
    Abstract: A method for producing a protective buffer flow in an EUV light source and an EUV mask inspection apparatus are provided. The method includes directing light along a light path from the EUV light source toward a collector. A first buffer gas from a buffer gas injector is injected through a plurality of through holes in the collector. The first buffer gas is directed away from a surface of the collector. A second buffer gas is injected from a ring manifold arranged peripherally to the collector and arranged a first distance toward the light path in relation to the collector. The second buffer gas is directed away from the surface of the collector. The first distance corresponds to a distance from the collector where the first buffer gas merges into a single flow.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: April 25, 2023
    Inventors: Erel Milshtein, Alexander Bykanov, Konstantin Tsigutkin, Lauren Wilson, Lubomyr Kucher, Brian Ahr, Maksim Alexandrovich Deminskii, Leonid Borisovich Zvedenuk, Aleksandr Vladimirovich Lebedev, Andrey Evgenievich Stepanov
  • Patent number: 11499924
    Abstract: Methods and systems for determining one or more characteristics of light in an optical system are provided. One system includes first detector(s) configured to detect light having one or more wavelengths shorter than 190 nm emitted from a light source at one or more first angles mutually exclusive of one or more second angles at which the light is collected from the light source by an optical system for illumination of a specimen and to generate first output responsive to the light detected by the first detector(s). In addition, the system includes a control subsystem configured for determining one or more characteristics of the light at one or more planes in the optical system based on the first output.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 15, 2022
    Assignee: KLA Corp.
    Inventors: Larissa Juschkin, Konstantin Tsigutkin
  • Publication number: 20220260928
    Abstract: A method for producing a protective buffer flow in an EUV light source and an EUV mask inspection apparatus are provided. The method includes directing light along a light path from the EUV light source toward a collector. A first buffer gas from a buffer gas injector is injected through a plurality of through holes in the collector. The first buffer gas is directed away from a surface of the collector. A second buffer gas is injected from a ring manifold arranged peripherally to the collector and arranged a first distance toward the light path in relation to the collector. The second buffer gas is directed away from the surface of the collector. The first distance corresponds to a distance from the collector where the first buffer gas merges into a single flow.
    Type: Application
    Filed: March 23, 2021
    Publication date: August 18, 2022
    Inventors: Erel Milshtein, Alexander Bykanov, Konstantin Tsigutkin, Lauren Wilson, Lubomyr Kucher, Brian Ahr, Maksim Alexandrovich Deminskii, Leonid Borisovich Zvedenuk, Aleksandr Vladimirovich Lebedev, Andrey Evgenievich Stepanov
  • Patent number: 11293880
    Abstract: An inspection system and a method of using the same are disclosed. The inspection system comprises an illumination source configured to emit an extreme ultraviolet (EUV) illumination beam for illuminating a sample, one or more first multi-cell detectors configured to generate a first illumination intensity distribution signal based on a first photocurrent, one or more second multi-cell detectors configured to generate a second illumination intensity distribution signal based on a second photocurrent, a detector assembly configured to receive the illumination beam and generate images, and a controller configured to: receive the images from the detector assembly, calibrate the second illumination intensity distribution signal to the images by mapping distortions in the second illumination intensity distribution signal to distorted pixels in the images, increase or decrease intensities of the distorted pixels in the images to generate corrected images, and detect defects on the samples.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: April 5, 2022
    Assignee: KLA Corporation
    Inventors: Larissa Juschkin, Konstantin Tsigutkin, Debashis De Munshi
  • Publication number: 20210262944
    Abstract: An inspection system and a method of using the same are disclosed. The inspection system comprises an illumination source configured to emit an extreme ultraviolet (EUV) illumination beam for illuminating a sample, one or more first multi-cell detectors configured to generate a first illumination intensity distribution signal based on a first photocurrent, one or more second multi-cell detectors configured to generate a second illumination intensity distribution signal based on a second photocurrent, a detector assembly configured to receive the illumination beam and generate images, and a controller configured to: receive the images from the detector assembly, calibrate the second illumination intensity distribution signal to the images by mapping distortions in the second illumination intensity distribution signal to distorted pixels in the images, increase or decrease intensities of the distorted pixels in the images to generate corrected images, and detect defects on the samples.
    Type: Application
    Filed: December 3, 2020
    Publication date: August 26, 2021
    Applicant: KLA Corporation
    Inventors: Larissa Juschkin, Konstantin Tsigutkin, Debashis De Munshi
  • Publication number: 20200378901
    Abstract: Methods and systems for determining one or more characteristics of light in an optical system are provided. One system includes first detector(s) configured to detect light having one or more wavelengths shorter than 190 nm emitted from a light source at one or more first angles mutually exclusive of one or more second angles at which the light is collected from the light source by an optical system for illumination of a specimen and to generate first output responsive to the light detected by the first detector(s). In addition, the system includes a control subsystem configured for determining one or more characteristics of the light at one or more planes in the optical system based on the first output.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 3, 2020
    Inventors: Larissa Juschkin, Konstantin Tsigutkin
  • Publication number: 20200348244
    Abstract: A method of inspection for defects on a substrate, such as a reflective reticle substrate, and associated apparatuses. The method includes performing the inspection using inspection radiation obtained from a high harmonic generation source and having one or more wavelengths within a wavelength range of between 20 nm and 150 nm. Also, a method including performing a coarse inspection using first inspection radiation having one or more first wavelengths within a first wavelength range; and performing a fine inspection using second inspection radiation having one or more second wavelengths within a second wavelength range, the second wavelength range comprising wavelengths shorter than the first wavelength range.
    Type: Application
    Filed: January 8, 2019
    Publication date: November 5, 2020
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Nitish KUMAR, Richard QUINTANILHA, Markus Gerardus Martinus Maria VAN KRAAIJ, Konstantin TSIGUTKIN, Willem Marie Julia Marcel COENE
  • Patent number: 9544984
    Abstract: An EUV light source includes a rotatable, cylindrically-symmetric element having a surface coated with a plasma-forming target material, a drive laser source configured to generate one or more laser pulses sufficient to generate EUV light via formation of a plasma by excitation of the plasma-forming target material, a set of focusing optics configured to focus the one or more laser pulses onto the surface of the rotatable, cylindrically-symmetric element, a set of collection optics configured to receive EUV light emanated from the generated plasma and further configured to direct the illumination to an intermediate focal point, and a gas management system including a gas supply subsystem configured to supply plasma-forming target material to the surface of the rotatable, cylindrically-symmetric element.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: January 10, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Alexander Bykanov, Oleg Khodykin, Daniel C. Wack, Konstantin Tsigutkin, Layton Hale, Joseph Walsh, Frank Chilese, Rudy F. Garcia, Brian Ahr
  • Publication number: 20150076359
    Abstract: An EUV light source includes a rotatable, cylindrically-symmetric element having a surface coated with a plasma-forming target material, a drive laser source configured to generate one or more laser pulses sufficient to generate EUV light via formation of a plasma by excitation of the plasma-forming target material, a set of focusing optics configured to focus the one or more laser pulses onto the surface of the rotatable, cylindrically-symmetric element, a set of collection optics configured to receive EUV light emanated from the generated plasma and further configured to direct the illumination to an intermediate focal point, and a gas management system including a gas supply subsystem configured to supply plasma-forming target material to the surface of the rotatable, cylindrically-symmetric element.
    Type: Application
    Filed: July 18, 2014
    Publication date: March 19, 2015
    Inventors: Alexander Bykanov, Oleg Khodykin, Daniel C. Wack, Konstantin Tsigutkin, Layton Hale, Joseph Walsh, Frank Chilese
  • Patent number: 8767291
    Abstract: A pulsed laser system includes a variable attenuator located in a secondary optical path bounded by a target surface and one or more reflective surfaces outside of the primary laser oscillator of the laser system. The variable attenuator isolates an output optical amplifier of the laser system from light reflected from the target during time periods between laser pulses. In some embodiments, the variable attenuator is synchronously controlled with the primary laser oscillator. In some other embodiments, the variable attenuator is controlled separately from the primary laser oscillator to shape the generated laser pulses.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: July 1, 2014
    Assignee: KLA-Tencor Corporation
    Inventor: Konstantin Tsigutkin
  • Publication number: 20130242380
    Abstract: A pulsed laser system includes a variable attenuator located in a secondary optical path bounded by a target surface and one or more reflective surfaces outside of the primary laser oscillator of the laser system. The variable attenuator isolates an output optical amplifier of the laser system from light reflected from the target during time periods between laser pulses. In some embodiments, the variable attenuator is synchronously controlled with the primary laser oscillator. In some other embodiments, the variable attenuator is controlled separately from the primary laser oscillator to shape the generated laser pulses.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 19, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventor: Konstantin Tsigutkin