Patents by Inventor KONSTANTINOS KONTOMARIS

KONSTANTINOS KONTOMARIS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190040767
    Abstract: A method for converting heat from a heat source to mechanical energy is provided. The method comprises heating a working fluid E-1,3,3,3-tetrafluoropropene and at least one compound selected from 1,1,1,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane using heat supplied from the heat source; and expanding the heated working fluid to lower the pressure of the working fluid and generate mechanical energy as the pressure of the working fluid is lowered. Additionally, a power cycle apparatus containing a working fluid to convert heat to mechanical energy is provided. The apparatus contains a working fluid comprising E-1,3,3,3-tetrafluoropropene and at least one compound selected from 1,1,1,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane. A working fluid is provided comprising an azeotropic or azeotrope-like combination of E-1,3,3,3-tetrafluoropropene, 1,1,2,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane.
    Type: Application
    Filed: October 12, 2018
    Publication date: February 7, 2019
    Inventor: Konstantinos Kontomaris
  • Patent number: 10132200
    Abstract: A method for converting heat from a heat source to mechanical energy is provided. The method comprises heating a working fluid E-1,3,3,3-tetrafluoropropene and at least one compound selected from 1,1,1,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane using heat supplied from the heat source; and expanding the heated working fluid to lower the pressure of the working fluid and generate mechanical energy as the pressure of the working fluid is lowered. Additionally, a power cycle apparatus containing a working fluid to convert heat to mechanical energy is provided. The apparatus contains a working fluid comprising E-1,3,3,3-tetrafluoropropene and at least one compound selected from 1,1,1,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane. A working fluid is provided comprising an azeotropic or azeotrope-like combination of E-1,3,3,3-tetrafluoropropene, 1,1,2,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: November 20, 2018
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Konstantinos Kontomaris
  • Publication number: 20180327565
    Abstract: A process is provided for preparing a thermoplastic polymer foam, comprising providing a foamable composition comprising a thermoplastic polymer and a blowing agent, wherein the blowing agent comprises from 10% to 60% by weight Z-1,1,1,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzz) and from 40% to 90% by weight 1,1-difluoroethane (HFC-152a), and wherein said thermoplastic polymer comprises polystyrene homopolymer, a polystyrene copolymer, styrene-acrylonitrile copolymer, or blends thereof expanding said foamable composition to produce a closed cell, smooth skin polymer foam, having a density of less than 42 kg/m2.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Inventors: KONSTANTINOS KONTOMARIS, TIM MCRAE
  • Publication number: 20180327646
    Abstract: The present disclosure relates to compositions comprising 1,1,2,2-tetrafluoroethane and at least one additional compound selected from the group consisting of 1,1-difluoroethane, 1,2-difluoroethane, 1,1,1-trifluoroethane, difluoromethane, octafluorocyclobutane, 1,1,1,2,3,4,4,4-octafluoro-2-butene, 1,1,1,2,3,3,3-heptafluoropropane, 1,1,3,3,3-pentafluoropropene, 1,1,1,2,2-pentafluoropropane, 1,2,3,3,3-pentafluoropropene, pentafluoroethane, chlorodifluoromethane, 2-chloro-1,1,1,2-tetrafluoroethane, 1-chloro-1,1,2,2-tetrafluoroethane, methyl chloride, chlorofluoromethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane, 1,1-dichloro-1,2,2,2-tetrafluoroethane, 1,1-difluoroethylene, and 1,1,2-trifluoroethylene and combinations thereof. These compositions are useful as refrigerants, heat transfer compositions, thermodynamic cycle (e.g.
    Type: Application
    Filed: April 25, 2016
    Publication date: November 15, 2018
    Inventors: KONSTANTINOS KONTOMARIS, MARIO JOSEPH NAPPA, TOM SPOORMAKER, KARL R KRAUSE, MICHAEL A SISK
  • Publication number: 20180264303
    Abstract: Disclosed is a mixture comprising the compound trans-1,1,1,4,4,4-hexafluoro-2-butene and at least one additional compound selected from the group consisting of HFOs, HFCs, HFEs, CFCs, CO2, olefins, organic acids, alcohols, hydrocarbons, ethers, aldehydes, ketones, and others such as methyl formate, formic acid, trans-1,2 dichloroethylene, carbon dioxide, cis-HFO-1234ze+HFO-1225yez; mixtures of these plus water; mixtures of these plus CO2; mixtures of these trans 1,2-dichloroethylene (DCE); mixtures of these plus methyl formate; mixtures with cis-HFO-1234ze+CO2; mixtures with cis-HFO-1234ze+HFO-1225yez+CO2; and mixtures with cis-HFO-1234ze+HFC-245fa. Also disclosed are methods of using and products of using the above compositions as blowing agents, solvents, heat transfer compositions, aerosol propellant compositions, fire extinguishing and suppressant compositions.
    Type: Application
    Filed: March 20, 2018
    Publication date: September 20, 2018
    Inventors: MARK L. ROBIN, KONSTANTINOS KONTOMARIS
  • Publication number: 20180223066
    Abstract: Disclosed are azeotropic or azeotrope-like compositions containing Z-1,1,1,4,4,4-hexafluoro-2-butene and methyl perfluoropropyl ether. Also disclosed is process of using the azeotropic or azeotrope-like composition as blowing agents for preparing a thermoplastic or thermoset foam. Also disclosed is a process of using the azeotropic or azeotrope-like composition as a refrigerant for producing cooling or heating. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as solvents. Also disclosed is a process of using the azeotropic or azeotrope-like composition as propellants for producing an aerosol. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as heat transfer media. Also disclosed is a process of extinguishing or suppressing a fire by using such azeotropic or azeotrope-like compositions. Also disclosed is a process of using such azeotropic or azeotrope-like compositions as dielectrics.
    Type: Application
    Filed: August 26, 2015
    Publication date: August 9, 2018
    Inventor: KONSTANTINOS KONTOMARIS
  • Publication number: 20180215979
    Abstract: A method is provided for converting heat from a heat source to mechanical or electrical energy. The method comprises heating a working fluid using heat supplied from the heat source; and expanding the heated working fluid to lower pressure of the working fluid and generating mechanical or electrical energy as the pressure of the working fluid is lowered. The method is characterized by using a working fluid comprising 1,3,3,4,4,4-hexafluoro-1-butene (HFO-1336ze). Also provided is a power cycle apparatus. The apparatus is characterized by containing a working fluid comprising HFO-1336ze. Also provided is a method for replacing HFC-245fa in a power cycle apparatus. The method comprises removing at least a portion of HFC-245fa and adding HFO-1336ze.
    Type: Application
    Filed: June 15, 2016
    Publication date: August 2, 2018
    Inventor: Konstantinos KONTOMARIS
  • Patent number: 9902888
    Abstract: Disclosed herein is a composition comprising (a) from 1 to 29 weight percent difluoromethane; (b) from 1 to 19 weight percent pentafluoroethane; (c) from 9 to 42 weight percent 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, or a mixture thereof; and (d) from 34 to 68 weight percent 2,3,3,3-tetrafluoropropene, E-1,3,3,3-tetrafluoropropene or mixture thereof; wherein when the composition contains 2,3,3,3-tetrafluoropropene, the composition also contains at least some 1,1,2,2-tetrafluoroethane; wherein the ratio of component (a) to component (b) is at most 1.5:1; and wherein the ratio of component (c) to component (d) is at least 0.04:1. The compositions are useful in methods for producing cooling and heating, methods for producing air conditioning, methods for replacing HCFC-22, R-410A, R-407C, HFC-134a, CFC-12, HCFC-22 and HCFC-124 and in heat transfer systems including heat pumps and air conditioners.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: February 27, 2018
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Thomas Joseph Leck, Konstantinos Kontomaris, Pavanandan Kista Naicker
  • Publication number: 20180002507
    Abstract: The present disclosure relates to compositions comprising E-1,1,1,4,4,4-hexafluoro-2-butene and additional compounds that may be useful as refrigerants, heat transfer compositions, aerosol propellants, foaming agents, blowing agents, solvents, cleaning agents, carrier fluids, displacement drying agents, buffing abrasion agents, polymerization media, expansion agents for polyolefins and polyurethane, gaseous dielectrics, power cycle working fluids, extinguishing agents, and fire suppression agents in liquid or vapor form, and in methods for detecting leaks.
    Type: Application
    Filed: February 3, 2016
    Publication date: January 4, 2018
    Inventors: MARIO JOSEPH NAPPA, XUEHUI SUN, IVAN SERGEYEVICH BALDYCHEV, SHENG PENG, KONSTANTINOS KONTOMARIS, BARBARA HAVILAND MINOR, JOSEPH ANTHONY CREAZZO
  • Publication number: 20180002506
    Abstract: The present disclosure relates to compositions comprising Z-1,1,1,4,4,4-hexafluoro-2-butene and additional compounds that may be useful as refrigerants, heat transfer compositions, aerosol propellants, foaming agents, blowing agents, solvents, cleaning agents, carrier fluids, displacement drying agents, buffing abrasion agents, polymerization media, expansion agents for polyolefins and polyurethane, gaseous dielectrics, power cycle working fluids, extinguishing agents, and fire suppression agents in liquid or vapor form.
    Type: Application
    Filed: February 3, 2016
    Publication date: January 4, 2018
    Inventors: MARIO JOSEPH NAPPA, XUEHUI SUN, IVAN SERGEYEVICH BALDYCHEV, SHENG PENG, KONSTANTINOS KONTOMARIS, BARBARA HAVILAND MINOR, JOSEPH ANTHONY CREAZZO
  • Patent number: 9828536
    Abstract: Disclosed herein is a method for producing heating comprising condensing a vapor working fluid comprising (a) E-CF3CH?CHF and (b) at least one tetrafluoroethane of the formula C2H2F4. Also disclosed herein is a heat pump apparatus containing a working fluid comprising (a) E-CF3CH?CHF and (b) at least one tetrafluoroethane of the formula C2H2F4. Also disclosed herein is a method for raising the maximum feasible condenser operating temperature in a heat pump apparatus suitable for use with HFC-134a, comprising charging the heat pump with a working fluid comprising (a) E-CF3CH?CHF and (b) at least one tetrafluoroethane of the formula C2H2F4. Also disclosed herein is a method for replacing HFC-134a refrigerant in a heat pump designed for HFC-134a comprising providing a replacement working fluid comprising (a) E-CF3CH?CHF and (b) at least one tetrafluoroethane of the formula C2H2F4.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: November 28, 2017
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Konstantinos Kontomaris
  • Publication number: 20170306205
    Abstract: A method is provided for converting heat from a heat source to mechanical energy. The method comprises heating a working fluid using heat supplied from the heat source; and expanding the heated working fluid to lower pressure of the working fluid and generating mechanical energy as the pressure of the working fluid is lowered. The method is characterized by using a working fluid comprising (2E)-1,1,1,4,5,5,5-heptafluoro-4-(trifluoromethyl)pent-2-ene (HFO-153-10mzzy). Also provided is a power cycle apparatus. The apparatus is characterized by containing a working fluid comprising HFO-153-10mzzy.
    Type: Application
    Filed: October 9, 2015
    Publication date: October 26, 2017
    Inventors: KONSTANTINOS KONTOMARIS, ROBERT DANIEL LOUSENBERG
  • Patent number: 9783720
    Abstract: Disclosed herein is a method for producing cooling comprising evaporating a liquid refrigerant comprising (a) E-CF3CH?CHF and (b) at least one tetrafluoroethane of the formula C2H2F4; provided that the weight ratio of E-CF3CH?CHF to the total amount of E-CF3CH?CHF and C2H2F4 is from about 0.05 to 0.99, in an evaporator, thereby producing a refrigerant vapor. Also disclosed herein is a method for replacing HCFC-124 or HFC-134a refrigerant in a chiller designed for said refrigerant comprising providing a replacement refrigerant composition comprising (a) E-CF3CH?CHF and (b) at least one tetrafluoroethane of the formula C2H2F4; provided that the weight ratio of E-CF3CH?CHF to the total amount of E-CF3CH?CHF and C2H2F4 is from about 0.05 to 0.99.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 10, 2017
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Konstantinos Kontomaris
  • Publication number: 20170275514
    Abstract: A method for producing heating in a high temperature heat pump having a heat exchanger is provided. The method comprises extracting heat from a working fluid, thereby producing a cooled working fluid wherein said working fluid comprises (2E)-1,1,1,4,5,5,5-heptafluoro-4-(trifluoromethyl)pent-2-ene (“HFO-153-10mzzy”). Also, a high temperature heat pump apparatus is provided containing a working fluid comprising HFO-153-10mzzy. Also a composition is provided comprising (i) a working fluid consisting essentially of HFO-153-10mzzy; and (ii) a stabilizer to prevent degradation at temperatures of 55° C. or above, or (iii) a lubricant suitable for use at 55° C. or above, or both (ii) and (iii).
    Type: Application
    Filed: September 3, 2015
    Publication date: September 28, 2017
    Applicant: The Chemours Company FC, LLC
    Inventors: KONSTANTINOS KONTOMARIS, ROBERT DANIEL LOUSENBERG
  • Patent number: 9745496
    Abstract: Disclosed herein is a method for producing heating in a high temperature heat pump comprising condensing a vapor working fluid comprising Z-1,1,1,4,4,4-hexafluoro-2-butene, in a condenser, thereby producing a liquid working fluid. Also disclosed herein is a method of raising the maximum feasible condenser operating temperature in a high temperature heat pump apparatus comprising charging the high temperature heat pump with a working fluid comprising Z-1,1,1,4,4,4-hexafluoro-2-butene. Also disclosed herein is a composition comprising: (a) Z-1,1,1,4,4,4-hexafluoro-2-butene; (b) 2-chloropropane; and (c) at least one lubricant suitable for use at a temperature of at least about 150° C.; is wherein the 2-chloropropane is present in an amount effective to form an azeotrope or azeotrope-like combination with the Z-1,1,1,4,4,4-hexafluoro-2-butene. Also disclosed herein is a high temperature heat pump apparatus containing a working fluid comprising Z-1,1,1,4,4,4-hexafluoro-2-butene.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: August 29, 2017
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Konstantinos Kontomaris
  • Publication number: 20170138223
    Abstract: Disclosed are compositions of novel working fluids uniquely designed for higher cycle efficiencies leading to higher overall system efficiencies. In particular, these working fluids are useful in Organic Rankine Cycle systems for efficiently converting heat from any heat source into mechanical energy. The present invention also relates to novel processes for recovering heat from a heat source using ORC systems with a novel working fluid comprising at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z), trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E), or mixtures thereof.
    Type: Application
    Filed: January 31, 2017
    Publication date: May 18, 2017
    Applicant: THE CHEMOURS COMPANY FC, LLC
    Inventor: Konstantinos Kontomaris
  • Patent number: 9593599
    Abstract: Disclosed are compositions of novel working fluids uniquely designed for higher cycle efficiencies leading to higher overall system efficiencies. In particular, these working fluids are useful in Organic Rankine Cycle systems for efficiently converting heat from any heat source into mechanical energy. The present invention also relates to novel processes for recovering heat from a heat source using ORC systems with a novel working fluid comprising at least about 20 weight percent cis-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-Z), trans-1,1,1,4,4,4-hexafluoro-2-butene (HFO-1336mzz-E), or mixtures thereof.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: March 14, 2017
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventor: Konstantinos Kontomaris
  • Publication number: 20160290175
    Abstract: A method for converting heat from a heat source to mechanical energy is provided. The method comprises heating a working fluid E-1,3,3,3-tetrafluoropropene and at least one compound selected from 1,1,1,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane using heat supplied from the heat source; and expanding the heated working fluid to lower the pressure of the working fluid and generate mechanical energy as the pressure of the working fluid is lowered. Additionally, a power cycle apparatus containing a working fluid to convert heat to mechanical energy is provided. The apparatus contains a working fluid comprising E-1,3,3,3-tetrafluoropropene and at least one compound selected from 1,1,1,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane. A working fluid is provided comprising an azeotropic or azeotrope-like combination of E-1,3,3,3-tetrafluoropropene, 1,1,2,2-tetrafluoroethane and 1,1,2,2-tetrafluoroethane.
    Type: Application
    Filed: November 21, 2014
    Publication date: October 6, 2016
    Inventor: KONSTANTINOS KONTOMARIS
  • Publication number: 20160244651
    Abstract: Disclosed herein is a composition comprising (a) from 1 to 29 weight percent difluoromethane; (b) from 1 to 19 weight percent pentafluoroethane; (c) from 9 to 42 weight percent 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, or a mixture thereof; and (d) from 34 to 68 weight percent 2,3,3,3-tetrafluoropropene, E-1,3,3,3-tetrafluoropropene or mixture thereof; wherein when the composition contains 2,3,3,3-tetrafluoropropene, the composition also contains at least some 1,1,2,2-tetrafluoroethane; wherein the ratio of component (a) to component (b) is at most 1.5:1; and wherein the ratio of component (c) to component (d) is at least 0.04:1. The compositions are useful in methods for producing cooling and heating, methods for producing air conditioning, methods for replacing HCFC-22, R-410A, R-407C, HFC-134a, CFC-12, HCFC-22 and HCFC-124 and in heat transfer systems including heat pumps and air conditioners.
    Type: Application
    Filed: October 6, 2014
    Publication date: August 25, 2016
    Inventors: THOMAS JOSEPH LECK, KONSTANTINOS KONTOMARIS, PAVANANDAN KISTA NAICKER
  • Publication number: 20160137895
    Abstract: Disclosed herein is a method for producing heating in a high temperature heat pump having a heat exchanger. The method comprises extracting heat from a working fluid, thereby producing a cooled working fluid wherein said working fluid comprises at least one alkyl perfluoroalkene ether. Also disclosed is a method of raising the maximum feasible condenser operating temperature in a high temperature heat pump apparatus. The method comprises charging the high temperature heat pump with a working fluid comprising at least one alkyl perfluoroalkene ether. Also disclosed is a high temperature heat pump apparatus. The apparatus contains a working fluid comprising at least one alkyl perfluoroalkene ether. Also disclosed is a composition comprising at least one alkyl perfluoroalkene ether, and specialized additives or lubricants for use in a high temperature heat pump.
    Type: Application
    Filed: May 30, 2014
    Publication date: May 19, 2016
    Inventors: KONSTANTINOS KONTOMARIS, ROBERT DANIEL LOUSENBERG, JOAN ELLEN BARTELT