Patents by Inventor Korhan Demirkan

Korhan Demirkan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11811051
    Abstract: An electrochemical cell has a cathode having a cathode current collector and a cathode active material, an anode having an anode current collector, lithium metal seed, and an anode cap on the lithium metal seed, a liquid electrolyte, a separator between the cathode active material and the anode active material, and a polymer electrolyte lamination layer bonding the anode to the separator. The polymer electrolyte lamination layer is formulated using a crosslinked polymer, a lithium salt, a plasticizer, and an anode additive. The anode cap and the polymer electrolyte lamination layer work together to produce densely plated lithium metal between the lithium metal seed and the anode cap with little or no external pressure.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: November 7, 2023
    Assignee: APPLE INC.
    Inventors: Alan A. Ritchie, Karl M. Brown, Lin Ma, Korhan Demirkan, Andrew Basile, Richard M. Mank, Bernd Jurgen Neudecker
  • Publication number: 20220376225
    Abstract: An all-solid-state battery cell has a cathode on which a cathode current collector is attached, a solid electrolyte deposited on the cathode opposite the cathode current collector, an anode comprising lithium deposited onto the solid electrolyte opposite the cathode, and an anode current collector bonded to the anode opposite the solid electrolyte with a bonding layer of a metal alloyed with the lithium.
    Type: Application
    Filed: May 20, 2021
    Publication date: November 24, 2022
    Inventors: Penchala N. Kankanala, Karl M. Brown, Alan A. Ritchie, Richard M. Mank, Ulrich A. Bonne, Korhan Demirkan
  • Publication number: 20220093908
    Abstract: An electrochemical cell has a cathode having a cathode current collector and a cathode active material, an anode having an anode current collector, lithium metal seed, and an anode cap on the lithium metal seed, a liquid electrolyte, a separator between the cathode active material and the anode active material, and a polymer electrolyte lamination layer bonding the anode to the separator. The polymer electrolyte lamination layer is formulated using a crosslinked polymer, a lithium salt, a plasticizer, and an anode additive. The anode cap and the polymer electrolyte lamination layer work together to produce densely plated lithium metal between the lithium metal seed and the anode cap with little or no external pressure.
    Type: Application
    Filed: September 22, 2020
    Publication date: March 24, 2022
    Inventors: Alan A. Ritchie, Karl M. Brown, Lin Ma, Korhan Demirkan, Andrew Basile, Richard M. Mank, Bernd Jurgen Neudecker
  • Patent number: 10211351
    Abstract: A solar cell containing a plurality of CIGS absorber sublayers has a conversion efficiency of at least 13.4 percent and a minority carrier lifetime below 2 nanoseconds. The sublayers may have a different composition from each other.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: February 19, 2019
    Assignee: BEIJING APOLLO DING RONG SOLAR TECHNOLOGY CO., LTD.
    Inventors: John Corson, Alex Austin, Robert Tas, Neil Mackie, Mats Larsson, Korhan Demirkan, Weijie Zhang, Jochen Titus, Swati Sevanna, Robert Zubeck, Randy Dorn, Asit Rairkar, Ron Rulkens, Ajay Saproo, Dan Vitkavage
  • Publication number: 20180337294
    Abstract: A solar cell containing a plurality of CIGS absorber sublayers has a conversion efficiency of at least 13.4 percent and a minority carrier lifetime below 2 nanoseconds. The sublayers may have a different composition from each other.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 22, 2018
    Inventors: John Corson, Alex Austin, Robert Tas, Neil Mackie, Mats Larsson, Korhan Demirkan, Weijie Zhang, Jochen Titus, Swati Sevanna, Robert Zubeck, Randy Dorn, Asit Rairkar, Ron Rulkens, Ajay Saproo, Dan Vitkavage
  • Patent number: 10043921
    Abstract: A solar cell containing a plurality of CIGS absorber sublayers has a conversion efficiency of at least 13.4 percent and a minority carrier lifetime below 2 nanoseconds. The sublayers may have a different composition from each other.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: August 7, 2018
    Assignee: BEIJING APOLLO DING RONG SOLAR TECHNOLOGY CO., LTD.
    Inventors: John Corson, Alex Austin, Robert Tas, Neil Mackie, Mats Larsson, Korhan Demirkan, Weijie Zhang, Jochen Titus, Swati Sevanna, Robert Zubeck, Randy Dorn, Asit Rairkar, Ron Rulkens, Ajay Saproo, Dan Vitkavage
  • Publication number: 20130000702
    Abstract: A photovoltaic device including a substrate, a first electrode layer over the substrate and a resistive p-type semiconductor layer over the first electrode layer. The device also includes a p-type absorber layer over the resistive p-type semiconductor layer, an n-type semiconductor layer over the p-type absorber layer and a second electrode layer over the n-type semiconductor layer. Additionally, a resistivity of the resistive p-type semiconductor layer is greater than a resistivity of the p-type absorber layer.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: MiaSole
    Inventors: Korhan Demirkan, Jochen Titus, Robert Tas
  • Publication number: 20110226320
    Abstract: A solar cell includes a first electrode located over a substrate, at least one first conductivity type semiconductor layer located over the first electrode, at least one second conductivity type semiconductor layer located over the first conductivity semiconductor layer, and a transparent conductive oxide contact layer located over the second conductivity semiconductor layer. The first surface of the transparent conductive oxide contact layer may be located closer to the second conductivity type semiconductor layer than the second surface of the transparent conductive oxide contact layer, and the transparent conductive oxide contact layer may have an oxygen concentration that decreases continuously or in at least two discrete steps as a function of thickness for at least a first portion of the contact layer thickness in a direction from the first surface to the second surface.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 22, 2011
    Inventors: Patrick LITTLE, Neil M. Mackie, Korhan Demirkan