Patents by Inventor Kosar Baghbani-Parizi

Kosar Baghbani-Parizi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11155865
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: October 26, 2021
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 11021748
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: June 1, 2021
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10787705
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: September 29, 2020
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20200255893
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: October 10, 2019
    Publication date: August 13, 2020
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10612091
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: April 7, 2020
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10539527
    Abstract: A sensing apparatus for sensing target materials including biological or chemical molecules in a fluid. One such apparatus includes a semiconductor-on-insulator (SOI) structure having an electrically-insulating layer, a fluidic channel supported by the SOI structure and configured and arranged to receive and pass a fluid including the target materials, and a semiconductor device including at least three electrically-contiguous semiconductor regions doped to exhibit a common polarity. The semiconductor regions include a sandwiched region sandwiched between two of the other semiconductor regions, and configured and arranged adjacent to the fluidic channel with a surface directed toward the fluidic channel for coupling to the target materials in the fluidic channel, and further arranged for responding to a bias voltage. The sensing apparatus also includes an amplification circuit in or on the SOI and that is arranged to facilitate sensing of the target material near the fluidic channel.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 21, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kosar Baghbani-Parizi, Yoshio Nishi, Hesaam Esfandyarpour
  • Patent number: 10494672
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: December 3, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20190226021
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Application
    Filed: August 28, 2018
    Publication date: July 25, 2019
    Inventors: Hesaam Esfandyarpour, Mark F. Oldham, Kosar Baghbani Parizi, Eric S. Nordman
  • Publication number: 20190177791
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 13, 2019
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20190177790
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 13, 2019
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T, Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10266892
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 23, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10260095
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: April 16, 2019
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20180335401
    Abstract: A sensing apparatus for sensing target materials including biological or chemical molecules in a fluid. One such apparatus includes a semiconductor-on-insulator (SOI) structure having an electrically-insulating layer, a fluidic channel supported by the SOI structure and configured and arranged to receive and pass a fluid including the target materials, and a semiconductor device including at least three electrically-contiguous semiconductor regions doped to exhibit a common polarity. The semiconductor regions include a sandwiched region sandwiched between two of the other semiconductor regions, and configured and arranged adjacent to the fluidic channel with a surface directed toward the fluidic channel for coupling to the target materials in the fluidic channel, and further arranged for responding to a bias voltage. The sensing apparatus also includes an amplification circuit in or on the SOI and that is arranged to facilitate sensing of the target material near the fluidic channel.
    Type: Application
    Filed: April 10, 2018
    Publication date: November 22, 2018
    Inventors: Kosar Baghbani-Parizi, Yoshio Nishi, Hesaam Esfandyarpour
  • Publication number: 20180327837
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: July 18, 2018
    Publication date: November 15, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 10100356
    Abstract: A method comprises magnetically holding a bead carrying biological material (e.g., nucleic acid, which may be in the form of DNA fragments or amplified DNA) in a specific location of a substrate, and applying an electric field local to the bead to isolate the biological material or products or byproducts of reactions of the biological material. For example, the bead isolated from other beads having associated biological material. The electric field in various embodiments concentrates reagents for an amplification or sequencing reaction, and/or concentrates and isolates detectable reaction by-products. For example, by isolating nucleic acids around individual beads, the electric field can allow for clonal amplification, as an alternative to emulsion PCR. In other embodiments, the electric field isolates a nanosensor proximate to the bead, to facilitate detection of at least one of local pH change, local conductivity change, local charge concentration change and local heat.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: October 16, 2018
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Mark F. Oldham, Kosar Baghbani Parizi, Eric S. Nordman
  • Publication number: 20180282805
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 4, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20180282806
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: June 13, 2018
    Publication date: October 4, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Publication number: 20180245150
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 30, 2018
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee
  • Patent number: 9945807
    Abstract: A sensing apparatus for sensing target materials including biological or chemical molecules in a fluid. One such apparatus includes a semiconductor-on-insulator (SOI) structure having an electrically-insulating layer, a fluidic channel supported by the SOI structure and configured and arranged to receive and pass a fluid including the target materials, and a semiconductor device including at least three electrically-contiguous semiconductor regions doped to exhibit a common polarity. The semiconductor regions include a sandwiched region sandwiched between two of the other semiconductor regions, and configured and arranged adjacent to the fluidic channel with a surface directed toward the fluidic channel for coupling to the target materials in the fluidic channel, and further arranged for responding to a bias voltage. The sensing apparatus also includes an amplification circuit in or on the SOI and that is arranged to facilitate sensing of the target material near the fluidic channel.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: April 17, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kosar Baghbani-Parizi, Yoshio Nishi, Hesaam Esfandyarpour
  • Patent number: 9926596
    Abstract: The invention relate to systems and methods for sequencing polynucleotides, as well as detecting reactions and binding events involving other biological molecules. The systems and methods may employ chamber-free devices and nanosensors to detect or characterize such reactions in high-throughput. Because the system in many embodiments is reusable, the system can be subject to more sophisticated and improved engineering, as compared to single use devices.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: March 27, 2018
    Assignee: GENAPSYS, INC.
    Inventors: Hesaam Esfandyarpour, Kosar Baghbani Parizi, Mark F. Oldham, Eric S. Nordman, Richard T. Reel, Susanne Baumhueter, Cheryl Heiner, Frank Lee