Patents by Inventor Kosuke OKAHASHI

Kosuke OKAHASHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11977284
    Abstract: There is provided an optical waveguide device including: a substrate; an optical waveguide formed on the substrate; and a working electrode that controls a light wave propagating through the optical waveguide, in which the working electrode includes a first base layer made of a first material, a first conductive layer on the first base layer, a second base layer made of a second material different from the first material, which is on the first conductive layer, and a second conductive layer on the second base layer, and an edge of the second base layer is covered with the second conductive layer, in a cross-section perpendicular to an extending direction of the optical waveguide.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: May 7, 2024
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Masayuki Motoya, Shotaro Hirata, Kosuke Okahashi, Yu Kataoka, Shingo Takano
  • Patent number: 11940708
    Abstract: Provided is an optical modulator that can be driven at lower voltage through the use of differential signal output. An optical modulator includes a substrate 1 and optical waveguides (21, 22) and a control electrode that are formed on the substrate, in which the optical waveguide includes Mach-Zehnder type optical waveguide, the control electrode is provided with two ground electrodes sandwiching three signal electrodes; the three signal electrodes are constituted by second and third signal electrodes that sandwich a first signal electrode, and have a wiring structure in which one modulation signal of the differential signal is applied to the first signal electrode, and the other modulation signal of the differential signal is applied to the second and third signal electrodes; and one branched waveguide (21) out of two Mach-Zehnder type optical waveguides is disposed between the first and second signal electrodes, and the other branched waveguide (22) is disposed between the first and third signal electrodes.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 26, 2024
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Norikazu Miyazaki, Kosuke Okahashi, Masayuki Motoya
  • Publication number: 20230367169
    Abstract: An optical waveguide device that can prevent fluctuations in electrical characteristics due to adhesion of foreign matter to electrodes without adversely affecting the degree of freedom in electrode design. The optical waveguide device includes a substrate, an optical waveguide formed on the substrate, an electrode for controlling a light wave propagating through the optical waveguide, and a first insulating layer disposed between two adjacent electrodes among the electrodes, in which the first insulating layer has a height from a surface of the substrate that is higher than heights of the two electrodes.
    Type: Application
    Filed: March 4, 2022
    Publication date: November 16, 2023
    Inventors: Kosuke Okahashi, Yu Kataoka
  • Publication number: 20230221590
    Abstract: Provided is an optical waveguide device in which both signal electrode collapse and signal electrode peeling/damage can be prevented.
    Type: Application
    Filed: December 18, 2020
    Publication date: July 13, 2023
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Masayuki MOTOYA, Kosuke OKAHASHI
  • Publication number: 20230026594
    Abstract: In order to provides an optical waveguide element and an optical modulator that can prevent the damage to the substrate and the deterioration of the properties of the substrate that may occur due to the stress, by reducing the influence of stress on the substrate by the buffer layer, the optical waveguide 1 is provided with a substrate 5 having an electro-optical effect; an optical waveguide 10 formed on the substrate 5; a first buffer layer 9a provided on the substrate 5; and a second buffer layer 9b provided under the substrate 5, wherein the first buffer layer 9a and the second buffer layer 9b are composed of substantially the same material and have substantially the same thickness, and the first buffer layer 9a and the second buffer layer 9b are formed to be in contact with an upper surface and lower surface of the substrate 5, respectively.
    Type: Application
    Filed: October 20, 2020
    Publication date: January 26, 2023
    Inventors: Kosuke OKAHASHI, Shingo TAKANO
  • Publication number: 20220381977
    Abstract: There is provided an optical waveguide device including: a substrate; an optical waveguide formed on the substrate; and a working electrode that controls a light wave propagating through the optical waveguide, in which the working electrode includes a first base layer made of a first material, a first conductive layer on the first base layer, a second base layer made of a second material different from the first material, which is on the first conductive layer, and a second conductive layer on the second base layer, and an edge of the second base layer is covered with the second conductive layer, in a cross-section perpendicular to an extending direction of the optical waveguide.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 1, 2022
    Inventors: Masayuki Motoya, Shotaro Hirata, Kosuke Okahashi, Yu Kataoka, Shingo Takano
  • Publication number: 20220382119
    Abstract: There is provided an optical waveguide device including a substrate, an optical waveguide formed on the substrate, and a working electrode that controls a light wave propagating through the optical waveguide, in which the working electrode includes a first base layer made of a first material, and a first conductive layer on the first base layer, and a conductor pattern including a second base layer made of a second material different from the first material and a second conductive layer on the second base layer is formed in a region other than a path from an input end to an output end of the optical waveguide, in a region on the substrate.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 1, 2022
    Inventors: Shotaro Hirata, Masayuki Motoya, Kosuke Okahashi, Yu Kataoka, Shingo Takano
  • Publication number: 20220308418
    Abstract: An optical waveguide device includes a substrate, an optical waveguide formed on the substrate, two electrodes disposed at positions sandwiching the optical waveguide from both sides in a plane of the substrate; and a dielectric layer covering a top of the optical waveguide, wherein the dielectric layer extends in a width direction of the optical waveguide to an extent including edges of the two electrodes, facing the optical waveguide, and is disposed to partially cover each of the two electrodes.
    Type: Application
    Filed: March 21, 2022
    Publication date: September 29, 2022
    Inventors: Yu Kataoka, Kosuke Okahashi
  • Publication number: 20220197104
    Abstract: Provided is an optical modulator that can be driven at lower voltage through the use of differential signal output. An optical modulator includes a substrate 1 and optical waveguides (21, 22) and a control electrode that are formed on the substrate, in which the optical waveguide includes Mach-Zehnder type optical waveguide, the control electrode is provided with two ground electrodes sandwiching three signal electrodes; the three signal electrodes are constituted by second and third signal electrodes that sandwich a first signal electrode, and have a wiring structure in which one modulation signal of the differential signal is applied to the first signal electrode, and the other modulation signal of the differential signal is applied to the second and third signal electrodes; and one branched waveguide (21) out of two Mach-Zehnder type optical waveguides is disposed between the first and second signal electrodes, and the other branched waveguide (22) is disposed between the first and third signal electrodes.
    Type: Application
    Filed: September 26, 2019
    Publication date: June 23, 2022
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Norikazu MIYAZAKI, Kosuke OKAHASHI, Masayuki MOTOYA
  • Publication number: 20220179247
    Abstract: In order to provide an optical modulator capable of preventing damage to the substrate and preventing deterioration of the properties of the modulator by reducing the stress on the substrate generated by the modulation electrode, there is provided an optical modulator 1, including: a substrate 5 having an electro-optic effect; an optical waveguide 10 formed on the substrate 5; and a modulation electrode (signal electrode S and ground electrode G) provided on the substrate 5 and modulating a light wave propagating in the optical waveguide 10, wherein a resin 8 to reduce the stress on the substrate 5 generated by the modulation electrode is arranged between a part of the bottom surface of the modulation electrode and the substrate 5 facing a part of the bottom surface of the modulation electrode.
    Type: Application
    Filed: August 14, 2019
    Publication date: June 9, 2022
    Inventors: Kosuke OKAHASHI, Norikazu MIYAZAKI, Masayuki MOTOYA
  • Publication number: 20220146901
    Abstract: To provide an optical modulator in which a plurality of Mach-Zehnder type optical waveguides are integrated, which can be driven at a low voltage, and in which the occurrence of a crosstalk phenomenon is suppressed. Provided is an optical modulator including a substrate 1 having an electro-optic effect, and an optical waveguide 10 and a control electrode that are formed on the substrate, in which the optical waveguide has a structure in which a plurality of Mach-Zehnder type optical waveguides are disposed in parallel, the control electrode has a GSSG type differential electrode structure in which two signal electrodes S are disposed between two ground electrodes G for one of the Mach-Zehnder type optical waveguides, and a crosstalk suppressing unit that suppresses signal crosstalk is provided in the ground electrode sandwiched between adjacent Mach-Zehnder type optical waveguides, so that optical modulator can be driven at a low voltage, and in which the occurrence of a crosstalk phenomenon is suppressed.
    Type: Application
    Filed: August 15, 2019
    Publication date: May 12, 2022
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Norikazu MIYAZAKI, Kosuke OKAHASHI, Masayuki MOTOYA