Patents by Inventor Kota Manabe

Kota Manabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8896282
    Abstract: There is disclosed a converter controller which can simply and early detect an abnormality of an auxiliary circuit constituting a soft switching converter. On turning off a first switching element, a controller detects a voltage between both the ends of a snubber capacitor and a voltage between both the ends of the first switching element, to obtain a difference voltage. The controller compares the obtained difference voltage with a voltage threshold value stored in a memory (not shown) to judge whether or not the difference voltage is larger than the voltage threshold value. When the difference voltage is smaller than the voltage threshold value, the controller judges that an auxiliary circuit is normal, to end processing, whereas when the difference voltage is not less than the voltage threshold value, the controller judges that a failure (an open failure) occurs in the auxiliary circuit, to shift to a fail safe operation, thereby ending the processing.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: November 25, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiko Hasegawa, Nobuyuki Kitamura, Kota Manabe
  • Patent number: 8889309
    Abstract: A fuel cell system capable of measuring AC impedance comprises: power generation stabilizing means for stabilizing power generation in a fuel cell, and impedance measuring means for measuring the AC impedance after power generation in the fuel cell has been stabilized. Since the AC impedance in a low frequency range is measured after power generation in the fuel cell is stabilized, no external disturbance occurs during measurement, and the AC impedance can be measured with a high degree of precision. Thus, a fuel cell system and a measuring method with which AC impedance can be measured with a high degree of precision can be provided.
    Type: Grant
    Filed: July 4, 2006
    Date of Patent: November 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Masahiro Shige
  • Patent number: 8859157
    Abstract: A fuel cell system includes; a fuel cell which generates electricity by using a fuel gas and an oxidant gas as reaction gases; current control means which controls current of a fuel cell; voltage control means which controls voltage of the fuel cell; and heat value control means which calculates a heat value required by the fuel cell system and decides a target current value of the current control means and a target voltage value of the voltage control means so as to generate the calculated necessary heat amount, thereby controlling the heat value. Thus, it is possible to supply a heat required for the fuel cell system without increasing the size of the fuel cell system.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: October 14, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Hiroyuki Imanishi, Tomoya Ogawa
  • Patent number: 8846258
    Abstract: The theme of the present invention is a fuel cell system capable of avoiding a disadvantage caused by the maintaining of a low-efficiency operation to improve the safety of a system operation. The fuel cell system is configured to perform the low-efficiency operation having a large power loss as compared with a usual operation at a predetermined low temperature to raise the temperature of a fuel cell in a short time as compared with the usual operation. The fuel cell system prohibits the low-efficiency operation to execute the usual operation, in a case where predetermined conditions are established at the predetermined low temperature. The predetermined conditions include a time when the generated power of the fuel cell cannot be consumed, a time when this generated power cannot be accumulated in a battery, or a time when the flooding of the fuel cell is generated.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Hiroyuki Imanishi, Tomoya Ogawa
  • Patent number: 8815460
    Abstract: Even in a case where a rapid variance is demanded as to the input voltage of a converter and the output terminal voltage of a fuel cell, stable converter control is realized. On judging that the change ratio of the demand power of a fuel cell exceeds a set threshold value, a controller executes converter stabilization processing. First, the controller controls a battery converter so that an input voltage of an inverter becomes a set target input voltage. Then, after the input voltage of the inverter reaches the target input voltage, the controller controls an FC converter so that an output terminal voltage of the fuel cell becomes a set target output terminal voltage.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 26, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kota Manabe
  • Patent number: 8802310
    Abstract: When a request power for a fuel cell is smaller than a predetermined value, a fuel cell system stops the supply of an oxidizing gas to the fuel cell and lowers the output voltage of the fuel cell from a use upper limit voltage to a reduction voltage to perform catalyst activation processing. When the output voltage of the fuel cell lowers to an air blow voltage because of the shortage of the oxidizing gas, the fuel cell system resupplies the oxidizing gas to recover the output voltage of the fuel cell.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: August 12, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Umayahara, Tadaichi Matsumoto, Fusaki Igarashi, Michio Yoshida, Kota Manabe
  • Patent number: 8795915
    Abstract: Provided is a fuel cell system capable of making a shift of an operation state while optically controlling an output voltage and an output voltage of a fuel cell. When an ECU judges that the time when an operation should be shifted from a low-efficiency operation to a normal operation has come, the ECU performs, as preprocessing prior to a shift to a ?V control, processing of increasing an oxidant gas supplied to a fuel cell stack by a predetermined amount. After this processing, the ECU detects output power, calculates an output power deviation, and then compares the output power deviation with a set deviation threshold. When the output power deviation exceeds the deviation threshold, the ECU carries out the ?V control, and then carries out an I-V control. Meanwhile, when the output power deviation does not exceed the deviation threshold, the ECU judges that the time when the ?V control is carried out has not come yet, and automatically starts the I-V control without carrying out the ?V control.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 5, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Imanishi, Kota Manabe, Yoshiaki Naganuma, Tomoya Ogawa
  • Patent number: 8790838
    Abstract: A fuel cell system capable of improving the voltage controllability of a converter provided in the system is provided. A controller judges whether or not a passing power of a DC/DC converter falls within a reduced response performance area for the number of active phases as of the present moment. When the controller determines that the passing power of the DC/DC converter falls within the reduced response performance area, the controller determines the number of phases which avoids the driving within the reduced response performance area, and outputs a command for switching to the determined number of phases (phase switching command) to the DC/DC converter.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: July 29, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiko Hasegawa, Kota Manabe
  • Publication number: 20140152089
    Abstract: In a fuel cell system which includes a high-electricity multiple-phase converter, noise generated due to an increase in reactor vibrations and due to a sound pressure increase caused by a plurality of reactors is effectively inhibited, and silence is improved. A fuel cell system includes a multiple-phase converter provided between a fuel cell and a load device. The fuel cell system includes: selecting means (e.g., a controller) for selecting a driving phase of the multiple-phase converter in accordance with the load of the load device; and driving means (e.g., a controller) for driving a plurality of driving phases, when selected by the selecting means, at carrier frequencies so that these driving phases are nearly opposite to each other.
    Type: Application
    Filed: July 5, 2011
    Publication date: June 5, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kota Manabe, Hikaru Arai, Tomohiko Kaneko, Hiroyuki Imanishi
  • Publication number: 20140145697
    Abstract: The step-up converter includes the plurality of converting units, each having the reactor and the semiconductor element part having electronic parts such as the transistor and the diodes. The ECU performs changeover control of increase or decrease of the number of drive phases of the converting units, based on the output condition from the fuel cell, the temperature condition of the reactor, and the temperature condition of the semiconductor element part.
    Type: Application
    Filed: July 19, 2011
    Publication date: May 29, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kota Manabe
  • Patent number: 8728678
    Abstract: A fuel cell system capable of improving the voltage controllability of a converter provided in the system is provided. A controller judges whether or not a passing power of a DC/DC converter falls within a reduced response performance area for the number of active phases as of the present moment. When the controller determines that the passing power of the DC/DC converter falls within the reduced response performance area, the controller determines the number of phases which avoids the driving within the reduced response performance area, and outputs a command for switching to the determined number of phases (phase switching command) to the DC/DC converter.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: May 20, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiko Hasegawa, Kota Manabe
  • Publication number: 20140072838
    Abstract: The fuel cell system includes: a fuel cell that generates electricity through an electrochemical reaction of fuel gas and oxidation gas; a battery that stores electricity or supplies electricity; and a driving motor that receives electricity for driving. The fuel cell system further includes: a fuel cell electricity supplying path provided between the fuel cell and the driving motor; a battery electricity supplying path extending from the battery and connected to the fuel cell electricity supplying path; and a circuit breaker that is provided closer to the fuel cell than a connecting point of the fuel cell electricity supplying path and the battery electricity supplying path.
    Type: Application
    Filed: May 2, 2011
    Publication date: March 13, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Imanishi, Kota Manabe
  • Patent number: 8663862
    Abstract: An FC voltage increasing converter includes a plurality of converter parts having reactors. Regarding the first of the plurality of converter parts provided with a thermistor, the output starts to be limited when the temperature detected by the thermistor reaches a limitation starting temperature, which is obtained based on a reference heat-resistant temperature, which is obtained by subtracting an error of the thermistor from a specification heat-resistant temperature of each of the reactors. Meanwhile, regarding the second, third and fourth of the plurality of converter parts not provided with thermistors, the outputs start to be limited when the temperature detected by the thermistor reaches a limitation starting temperature obtained based on an allowable temperature, which is obtained by subtracting a characteristic-variation temperature of the reactor from the reference heat-resistant temperature of the reactor.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: March 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Imanishi, Kota Manabe
  • Patent number: 8653802
    Abstract: A chopper circuit includes an input unit that inputs a main turn-on signal for turning on a main switching element and an auxiliary turn-on signal for turning on an auxiliary switching element; and a prohibiting unit that prohibits the main switching element from turning on unless the auxiliary turn-on signal is input.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: February 18, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiko Hasegawa, Kota Manabe, Toshihiko Minamii
  • Patent number: 8610414
    Abstract: An object is to miniaturize booster coils used in a vehicle-mounted booster converter. In the design method for a vehicle-mounted multi-phase converter including multiple booster coils and a switching circuit for generating an induced electromotive force at each booster coil by switching of current flowing to each booster coil for applying an output voltage, based on an input voltage and the induced electromotive force generated at each booster coil, to a vehicle drive circuit, a coupling factor indicating the extent by which the induced electromotive force in one of multiple booster coils contributes to the voltage between terminals of another booster coil is determined on the basis of a relationship between the coupling factor and current ripple component of each booster coil.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 17, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroo Fuma, Yuji Nishibe, Kota Manabe, Nobuyuki Kitamura
  • Patent number: 8609289
    Abstract: Provided is a fuel cell system that can suitably control a voltage converter in response to a judgment that an abnormal condition occurs in a power detection unit that detects a power passing through the voltage converter. The fuel cell system has: a first power detection unit that estimates an effective value of a converter input power by multiplying the converter input power, which is obtained from a battery voltage and a battery current, by a converter efficiency; a second power detection unit that estimates a converter output power from a fuel cell voltage, a fuel cell current and a driving motor load power; and a third power detection unit that estimates a converter flowing power from a current of a reactor measured by a current sensor (shown in a separate drawing). The fuel cell system also has similar detection units for current, and using one of the detection units or a combination of some of them, specifies a malfunctioning sensor and prohibits correction of parameters.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 17, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiko Hasegawa, Kota Manabe
  • Patent number: 8603689
    Abstract: A fuel cell system according to the present invention is characterized by comprising a measurement unit which measures an impedance of a fuel cell in a predetermined frequency region, and a regulation unit which regulates an amount of a gas to be supplied to the fuel cell based on a measured value of the impedance in the predetermined frequency region. According to such a constitution, the impedance of the fuel cell in the predetermined frequency region (e.g., a low frequency region) is measured, and the amount of the gas (e.g., an amount of an oxidizing gas) to be supplied to the fuel cell is regulated based on this measured value of the impedance. Here, since the impedance of the fuel cell in the predetermined frequency region largely differs with a fuel supply state (see FIG. 2), the amount of the gas to be supplied to the fuel cell can be regulated based on the measured value of the impedance to realize a highly efficient and stable operation.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: December 10, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Nobuyuki Orihashi, Shigetaka Hamada, Masahiro Shige
  • Patent number: 8597848
    Abstract: There is disclosed a fuel cell system or the like capable of sufficiently reducing an exhaust hydrogen concentration even in a case where a fuel cell is operated in a state of a low power generation efficiency. A bypass valve is arranged between an oxidation gas supply path and a cathode-off gas channel. In a state in which supply of an oxidation gas to a cathode falls short, pumping hydrogen is included in a cathode-off gas. Therefore, a valve open degree of the bypass valve is regulated, and a flow rate of bypass air is regulated to control the exhaust hydrogen concentration.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: December 3, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Imanishi, Kota Manabe, Tomoya Ogawa, Go Tejima, Yoshiaki Naganuma, Hironori Noto
  • Patent number: 8593845
    Abstract: Provided is a converter controller capable of preventing destruction of an element such as an auxiliary switch by preventing operation interference between auxiliary circuits of respective phases in a multiphase soft switching converter. A duty threshold input unit receives, as an input, an obtained acceptable duty deviation value. A duty deviation computation unit judges whether or not the duty deviation between the phases does not exceed an acceptable duty deviation value. When the duty deviation between the phases exceeds the acceptable duty deviation value, the duty deviation computation unit corrects an adjusted U-phase duty ratio, adjusted V-phase duty ratio and adjusted W-phase duty ratio under the PID control rule, and outputs the resultant duty ratios to an FC converter control circuit.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: November 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kota Manabe
  • Patent number: 8574777
    Abstract: There is disclosed a fuel cell system capable of stably operating auxiliary devices driven at a high voltage and the like, even in a case where a poisoned electrode catalyst is recovered or a fuel cell is warmed up. On detecting that the electrode catalyst is poisoned, a controller derives a target operation point which is sufficient for recovering an activity of the poisoned electrode catalyst. Then, shift of the operation point from a usual operation point to a low-efficiency operation point is realized so that an output power is held to be constant.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: November 5, 2013
    Assignee: Toyota Jodosha Kabushiki Kaisha
    Inventors: Kota Manabe, Kimihide Horio