Patents by Inventor Kouji Matsuoka

Kouji Matsuoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8951696
    Abstract: A fuel electrode catalyst for fuel cell excellent in CO poisoning resistance, an electrode/membrane assembly using the fuel electrode catalyst for fuel cell, and a fuel cell and a fuel cell system including the electrode/membrane assembly are provided. The fuel electrode catalyst for fuel cell comprises a platinum-ruthenium first alloy catalyst and a second alloy catalyst obtained by partially substituting ruthenium of the platinum-ruthenium first alloy catalyst by a metal lower dissolving potential than ruthenium. The electrode/membrane assembly 7 comprises three layers of a second alloy catalyst layer 3, a first alloy catalyst layer 4, and a ruthenium catalyst layer 5 arranged in this order from a polymer electrolytic membrane 1 side toward a gas diffusion layer 13 side.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 10, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Kenji Kadoma, Kouji Matsuoka
  • Patent number: 8932784
    Abstract: A fuel cell includes a plate-like cell, a separator on one side of the plate-like cell, and a separator on the other side of the plate-like cell. The plate-like cell includes a solid polymer electrolyte membrane, an anode, and a cathode. The anode has a stacked body composed of a catalyst layer and a gas diffusion layer. The cathode has a stacked body composed of a catalyst layer and a gas diffusion layer. The catalyst layer contains a porous carbon material formed with micro pores, which functions as an electric double layer, and an ion-exchange resin. At least part of the porous carbon material supports a catalytic metal such as platinum. The porous carbon material to be used is preferably a carbide-derived carbon. The carbide-derived carbon preferably has micro pores of 1 nm or less.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 13, 2015
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Kouji Matsuoka, Shigeru Sakamoto
  • Publication number: 20140178794
    Abstract: A fuel electrode catalyst for fuel cell excellent in CO poisoning resistance, an electrode/membrane assembly using the fuel electrode catalyst for fuel cell, and a fuel cell and a fuel cell system including the electrode/membrane assembly are provided. The fuel electrode catalyst for fuel cell comprises a platinum-ruthenium first alloy catalyst and a second alloy catalyst obtained by partially substituting ruthenium of the platinum-ruthenium first alloy catalyst by a metal lower dissolving potential than ruthenium. The electrode/membrane assembly 7 comprises three layers of a second alloy catalyst layer 3, a first alloy catalyst layer 4, and a ruthenium catalyst layer 5 arranged in this order from a polymer electrolytic membrane 1 side toward a gas diffusion layer 13 side.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicant: Sanyo Electric Co., Ltd.
    Inventors: Kenji Kadoma, Kouji Matsuoka
  • Publication number: 20090246600
    Abstract: A fuel electrode catalyst for fuel cell excellent in CO poisoning resistance, an electrode/membrane assembly using the fuel electrode catalyst for fuel cell, and a fuel cell and a fuel cell system including the electrode/membrane assembly are provided. The fuel electrode catalyst for fuel cell comprises a platinum-ruthenium first alloy catalyst and a second alloy catalyst obtained by partially substituting ruthenium of the platinum-ruthenium first alloy catalyst by a metal lower dissolving potential than ruthenium. The electrode/membrane assembly 7 comprises three layers of a second alloy catalyst layer 3, a first alloy catalyst layer 4, and a ruthenium catalyst layer 5 arranged in this order from a polymer electrolytic membrane 1 side toward a gas diffusion layer 13 side.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Inventors: Kenji Kadoma, Kouji Matsuoka
  • Publication number: 20090191439
    Abstract: Oxidation or corrosion of carbon material contained in a cathode due to the reverse current that occurs at the starting of a fuel cell is suppressed. The fuel cell includes a plate-like cell, a separator on one side of the plate-like cell, and a separator on the other side of the plate-like cell. The plate-like cell includes a solid polymer electrolyte membrane, an anode, and a cathode. The anode has a stacked body composed of a catalyst layer and a gas diffusion layer. The cathode has a stacked body composed of a catalyst layer and a gas diffusion layer. The catalyst layer contains a porous carbon material formed with micro pores, which functions as an electric double layer, and an ion-exchange resin. At least part of the porous carbon material supports a catalytic metal such as platinum. The porous carbon material to be used is preferably a carbide-derived carbon. The carbide-derived carbon preferably has micro pores of 1 nm or less.
    Type: Application
    Filed: March 27, 2008
    Publication date: July 30, 2009
    Inventors: Kouji Matsuoka, Shigeru Sakamoto
  • Patent number: 5925224
    Abstract: A solvent containing low-boiling and high-boiling impurities in an evaporating section, so that the high-boiling impurities is left as a tank bottom waste, and a solvent vapor from the section is guide through a mist separator into a condenser. A condensate produced in the condenser is returned to the mist separator so as to serve as a mist catching liquid. A fraction not having condensed in the condenser is fed to a rectifying section where fractional condensation is performed so that the low-boiling impurities are condensed to be removed. A remainder of the solvent vapor from which the impurities have been removed is also condensed and recovered for reuse in the resist washing/exfoliating step during manufacture of liquid crystal devices or IC, so that the soiled solvent need not be discarded or treated in a remote cite, thereby facilitating the process or the step using the solvent.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: July 20, 1999
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Kazuki Kobayashi, Kouji Matsuoka, Kensuke Yano, Norio Adachi, Tatsuo Takami, Hiroshi Morikawa
  • Patent number: 5553297
    Abstract: A programmable controller is disclosed that incorporates a sequence control program adapted to input and output information to a variety of local intelligent appliances at a high velocity and a high efficiency in the field of factory automation for efficiently controlling factory production lines or the field of process automation for controlling multiple industrial processes. Provided for this purpose is an improved a change-over system associated with a 1-bit processor and an ordinary processor for executing the sequence control program. Also improved are functions for a user to particularly specify a BASIC program, software/hardware control functions for a group of I/O boards for transferring signals to receiving signals from the local appliances, and the ability to program the internally stored sequence control program.
    Type: Grant
    Filed: September 9, 1993
    Date of Patent: September 3, 1996
    Assignee: Yokogawa Electric Corporation
    Inventors: Masaaki Yonezawa, Kiyoshi Hasegawa, Yasunori Kawata, Kouji Matsuoka, Takasi Kadowaki