Patents by Inventor Kouji Nomura

Kouji Nomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8739591
    Abstract: There are provided an electrode tip dressing apparatus and an electrode tip dressing tool for resistance welding, which are miniaturized by reducing a rotational driving-force of a dressing tool. By adjusting a curvature radius of a dressing portion 4 of a dressing tool 2, a contact width, wherein a top electrode tip 5 abuts to the dressing portion 4 of the dressing tool 2, is adjusted from a rotational center of the dressing tool 2 to the outer side of the dressing tool 2. Dressing work done with the dressing tool 2 is thus made to be constant at the whole area of the dressing portion 4, from the rotational center of the dressing tool 2 to the outer side of the dressing tool 2. Accordingly, excess dressing work, which brings decline of productivity, can be avoided, thus enabling to dress the top electrode tip 5 with the minimal dressing work. A rotational driving-power of the dressing tool 2 is thereby reduced, enabling to labor-save and miniaturize the electrode tip dressing apparatus.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: June 3, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shuhei Ogura, Kouji Nomura, Mikiji Suzuki, Yuki Doi, Takayuki Shimizu, Shinji Terada, Kiyoshi Shinki, Hideya Kimura, Yoshinori Tanaka
  • Patent number: 7893311
    Abstract: The invention is to provide a catalyst excellent in product producibility and selectivity, and in coking degradation resistance and regeneration degradation resistance, which is for production of ethylene and propylene through catalytic conversion from a hydrocarbon material. The invention relates to a method for producing ethylene and propylene through catalytic conversion from an olefin, by contacting a hydrocarbon material with a zeolite-containing shaped catalyst satisfying the following requirements (1) to (6), in a reactor: (1) the zeolite is an intermediate pore-size zeolite having a pore size of from 5 to 6.5 angstroms, (2) the zeolite does not substantially contain a proton, (3) the zeolite contains at least one metal selected from the group consisting of metals belonging to the Group IB of the Periodic Table, (4) the zeolite-containing shaped catalyst comprises silica as a binder, (5) the zeolite-containing shaped catalyst has a side-crush strength of at least 2.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: February 22, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yoshikazu Takamatsu, Kouji Nomura
  • Patent number: 7884257
    Abstract: The invention is to provide a catalyst for long-term, high-yield and stable production of ethylene and propylene in an efficient and simple method of catalytic conversion from a hydrocarbon material. The invention relates to a method for producing ethylene and propylene by contacting a hydrocarbon material that contains an olefin having from 4 to 12 carbon atoms in an amount of at least 20% by weight, with a zeolite-containing shaped catalyst satisfying the following requirements (1) to (4), in a reactor for catalytic conversion of that olefin: (1) the zeolite is an intermediate pore-size zeolite having a pore size of from 5 to 6.5 angstroms, (2) the zeolite does not substantially contain a proton, (3) the zeolite contains at least one metal selected from the group consisting of metals belonging to the Group IB of the Periodic Table, (4) the zeolite has a silica/alumina molar ratio (SiO2/Al2O3 molar ratio) of from 800 to 2,000.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: February 8, 2011
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yoshikazu Takamatsu, Kouji Nomura
  • Patent number: 7863125
    Abstract: The manufacturing method of the CMOS type semiconductor device which can suppress the boron penetration from the gate electrode of the pMOS transistors to the semiconductor substrate in the case that boron is contained in the gate electrodes, while enabling the improvement in the NBTI lifetime of the pMOS transistors, without degrading the performance of the nMOS transistors, is offered. The manufacturing method of the CMOS type semiconductor device concerning the present invention has the following process steps. Halogen is introduced to the semiconductor substrate of pMOS transistor formation areas. Next, a gate insulating film is formed on the semiconductor substrate of the pMOS transistor formation areas. Next, nitrogen is introduced to the gate insulating film.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 4, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Shimpei Tsujikawa, Yasuhiko Akamatsu, Hiroshi Umeda, Jiro Yugami, Masaharu Mizutani, Masao Inoue, Junichi Tsuchimoto, Kouji Nomura
  • Publication number: 20100063340
    Abstract: The invention is to provide a catalyst excellent in product producibility and selectivity, and in coking degradation resistance and regeneration degradation resistance, which is for production of ethylene and propylene through catalytic conversion from a hydrocarbon material. The invention relates to a method for producing ethylene and propylene through catalytic conversion from an olefin, by contacting a hydrocarbon material with a zeolite-containing shaped catalyst satisfying the following requirements (1) to (6), in a reactor: (1) the zeolite is an intermediate pore-size zeolite having a pore size of from 5 to 6.5 angstroms, (2) the zeolite does not substantially contain a proton, (3) the zeolite contains at least one metal selected from the group consisting of metals belonging to the Group IB of the Periodic Table, (4) the zeolite-containing shaped catalyst comprises silica as a binder, (5) the zeolite-containing shaped catalyst has a side-crush strength of at least 2.
    Type: Application
    Filed: September 14, 2006
    Publication date: March 11, 2010
    Inventors: Yoshikazu Takamatsu, Kouji Nomura
  • Publication number: 20090303158
    Abstract: A head-up display system having a judgment boundary information storage storing judgment boundary information defining judgment area used for judging based on a movement of the driver's eye position whether or not a reflecting angle of the reflector is adjusted, an imaging device imaging an imaging area, an eye position detecting device detecting a driver's eye position in the imaging area based on image information imaged by the imaging device, a judging device judging whether or not a predetermined adjusting condition is satisfied when the eye position detected by the eye position detecting device is outside the judgment boundary, an install state determining device determining an install state of the reflector based on the detected eye position when the judging device judges that the adjusting condition is satisfied, and a reflector adjusting device adjusting the reflector to be in the determined install state.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 10, 2009
    Inventors: Nobuyuki TAKAHASHI, Kunimitsu Aoki, Masahiro TAKAMATSU, Kouji NOMURA
  • Publication number: 20090263945
    Abstract: The manufacturing method of the CMOS type semiconductor device which can suppress the boron penetration from the gate electrode of the pMOS transistors to the semiconductor substrate in the case that boron is contained in the gate electrodes, while enabling the improvement in the NBTI lifetime of the pMOS transistors, without degrading the performance of the nMOS transistors, is offered. The manufacturing method of the CMOS type semiconductor device concerning the present invention has the following process steps. Halogen is introduced to the semiconductor substrate of pMOS transistor formation areas. Next, a gate insulating film is formed on the semiconductor substrate of the pMOS transistor formation areas. Next, nitrogen is introduced to the gate insulating film.
    Type: Application
    Filed: June 26, 2009
    Publication date: October 22, 2009
    Applicant: Renesas Technology Corp.,
    Inventors: Shimpei Tsujikawa, Yasuhiko Akamatsu, Hiroshi Umeda, Jiro Yugami, Masaharu Mizutani, Masao Inoue, Junichi Tsuchimoto, Kouji Nomura
  • Patent number: 7569890
    Abstract: The manufacturing method of the CMOS type semiconductor device which can suppress the boron penetration from the gate electrode of the pMOS transistors to the semiconductor substrate in the case that boron is contained in the gate electrodes, while enabling the improvement in the NBTI lifetime of the pMOS transistors, without degrading the performance of the nMOS transistors, is offered. The manufacturing method of the CMOS type semiconductor device concerning the present invention has the following process steps. Halogen is introduced to the semiconductor substrate of pMOS transistor formation areas. Next, a gate insulating film is formed on the semiconductor substrate of the pMOS transistor formation areas. Next, nitrogen is introduced to the gate insulating film.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 4, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Shimpei Tsujikawa, Yasuhiko Akamatsu, Hiroshi Umeda, Jiro Yugami, Masaharu Mizutani, Masao Inoue, Junichi Tsuchimoto, Kouji Nomura
  • Publication number: 20090182184
    Abstract: The invention is to provide a catalyst for long-term, high-yield and stable production of ethylene and propylene in an efficient and simple method of catalytic conversion from a hydrocarbon material. The invention relates to a method for producing ethylene and propylene by contacting a hydrocarbon material that contains an olefin having from 4 to 12 carbon atoms in an amount of at least 20% by weight, with a zeolite-containing shaped catalyst satisfying the following requirements (1) to (4), in a reactor for catalytic conversion of that olefin: (1) the zeolite is an intermediate pore-size zeolite having a pore size of from 5 to 6.5 angstroms, (2) the zeolite does not substantially contain a proton, (3) the zeolite contains at least one metal selected from the group consisting of metals belonging to the Group IB of the Periodic Table, (4) the zeolite has a silica/alumina molar ratio (SiO2/Al2O3 molar ratio) of from 800 to 2,000.
    Type: Application
    Filed: September 14, 2006
    Publication date: July 16, 2009
    Inventors: Yoshikazu Takamatsu, Kouji Nomura
  • Publication number: 20080134743
    Abstract: There are provided an electrode tip dressing apparatus and an electrode tip dressing tool for resistance welding, which are miniaturized by reducing a rotational driving-force of a dressing tool. By adjusting a curvature radius of a dressing portion 4 of a dressing tool 2, a contact width, wherein a top electrode tip 5 abuts to the dressing portion 4 of the dressing tool 2, is adjusted from a rotational center of the dressing tool 2 to the outer side of the dressing tool 2. Dressing work done with the dressing tool 2 is thus made to be constant at the whole area of the dressing portion 4, from the rotational center of the dressing tool 2 to the outer side of the dressing tool 2. Accordingly, excess dressing work, which brings decline of productivity, can be avoided, thus enabling to dress the top electrode tip 5 with the minimal dressing work. A rotational driving-power of the dressing tool 2 is thereby reduced, enabling to labor-save and miniaturize the electrode tip dressing apparatus.
    Type: Application
    Filed: February 28, 2006
    Publication date: June 12, 2008
    Inventors: Shuhei Ogura, Kouji Nomura, Mikiji Suzuki, Yuki Doi, Takayuki Shimizu, Shinji Terada, Kiyoshi Shinki, Hideya Kimura, Yoshinori Tanaka
  • Publication number: 20060273401
    Abstract: The manufacturing method of the CMOS type semiconductor device which can suppress the boron penetration from the gate electrode of the pMOS transistors to the semiconductor substrate in the case that boron is contained in the gate electrodes, while enabling the improvement in the NBTI lifetime of the pMOS transistors, without degrading the performance of the nMOS transistors, is offered. The manufacturing method of the CMOS type semiconductor device concerning the present invention has the following process steps. Halogen is introduced to the semiconductor substrate of pMOS transistor formation areas. Next, a gate insulating film is formed on the semiconductor substrate of the pMOS transistor formation areas. Next, nitrogen is introduced to the gate insulating film.
    Type: Application
    Filed: April 24, 2006
    Publication date: December 7, 2006
    Applicant: Renesas Technology Corp.
    Inventors: Shimpei Tsujikawa, Yasuhiko Akamatsu, Hiroshi Umeda, Jiro Yugami, Masaharu Mizutani, Masao Inoue, Junichi Tsuchimoto, Kouji Nomura
  • Publication number: 20060153988
    Abstract: According to this invention, there are provided a process for manufacturing a water-absorbing composite comprising the steps of: (A) spraying an aqueous monomer solution containing acrylic acid and/or its salt on a heat-raised fibrous substrate to apply droplets of the aqueous monomer solution on the fiber constituting the fibrous substrate; (B) polymerizing the monomers in the droplets to form a water-absorbing composite in which the water-absorbing resin particles adhere to the fiber; a process for manufacturing a thermally-compressed water-absorbing composite further comprising step (C): further thermally compressing the above water-absorbing composite; and a process for manufacturing a laminated water-absorbing composite further comprising step (D): laminating the water-absorbing composite and a fibrous substrate to form a laminate and then thermally compressing the laminate to thermally fuse the water-absorbing composite and the fibrous substrate.
    Type: Application
    Filed: September 1, 2003
    Publication date: July 13, 2006
    Applicant: Daio Paper Corporation
    Inventors: Kouji Nomura, Susumu Miho, Koushi Yamamoto
  • Patent number: 6911566
    Abstract: A process for producing 1,3-propanediol, comprising: hydrating acrolein in a liquid phase in the presence of a hydration catalyst to form 3-hydroxypropanal; separating any unreacted acrolein, if any is present; and carrying out catalytic hydrogenation of the 3-hydroxypropanal in a liquid or gas phase with a hydrogenation catalyst, wherein the hydration catalyst is a catalyst comprising at least one member selected from the group consisting of the following materials (a) to (c) and has a pH of 6 or less at 20° C., when made into a slurry by dispersing the catalyst in a quantity of water 5 times as much as the quantity of catalyst by weight: (a) a metalloaluminophosphate molecular sieve, (b) an FER type zeolite, and (c) an oxide or compound oxide, excluding crystalline aluminosilicate zeolites, which comprises one or more element(s) selected from the elements belonging to group 4, group 13 and group 14 of the periodic table.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: June 28, 2005
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Takashi Tsunoda, Kouji Nomura
  • Publication number: 20050094931
    Abstract: On a substrate are configured piezoelectric elements composed of a mirror device, piezoelectric thin films, electrodes, and elastic members, and application of a voltage to the electrodes causes flexure deformation in the piezoelectric thin films, so that the mirror device is actuated. A plurality of the piezoelectric elements are arranged in parallel with a longitudinal direction thereof, and torsion springs are provided so as to extend in a direction orthogonal to the longitudinal direction and so as to hold the mirror device in connection with the substrate. The mirror device is connected to the piezoelectric elements through strain absorbers. In such a configuration, the torsion springs serve as a rotation axis, and the mirror device is inclined about the rotation axis.
    Type: Application
    Filed: January 20, 2003
    Publication date: May 5, 2005
    Inventors: Kazuo Yokoyama, Katsuhiko Asai, Yousuke Irie, Shinichiro Aoki, Kouji Nomura, Katsuya Morinaka
  • Publication number: 20040097764
    Abstract: A process for producing 1,3-propanediol, comprising:
    Type: Application
    Filed: September 2, 2003
    Publication date: May 20, 2004
    Inventors: Takashi Tsunoda, Kouji Nomura
  • Patent number: 6222302
    Abstract: The drive section made by bonding the piezoelectric material on part of the elastic shim and the displacement amplifying section which amplifies the amplitude of vibration vibrated in the drive section are provided in the same plane. The device is driven at drive frequencies in a region between the resonance frequency of the drive section and the resonance frequency of the displacement amplifying section.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: April 24, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Katsumi Imada, Katsunori Moritoki, Takeshi Masutani, Kouji Nomura, Kouji Kawakita
  • Patent number: 6207605
    Abstract: A high silica content zeolite-based catalyst for use in a reaction which uses a feedstock containing an aromatic hydrocarbon or which gives a product containing an aromatic hydrocarbon, which catalyst satisfies the following requirements (1), (2), (3) and (4): (1) the zeolite constituting a zeolite-based catalyst has an SiO2/Al2O3 molar ratio of from 20 to 200; (2) the zeolite constituting a zeolite-based catalyst has a primary particle diameter of from 0.3 to 3 &mgr;m; (3) when a zeolite-based catalyst is converted into H type, the H type zeolite-based catalyst has a ratio of the number of surface acid sites to the total number of acid sites is from 0.03 to 0.15; and (4) a zeolite-based catalyst exhibits a pyridine-desorbed amount (B) as measured at a temperature of from 500° C. to 900° C. by a hot desorption method when converted into H type after being subjected to a steam treatment at an H2O partial pressure of 0.8 atm and a temperature of 650° C.
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: March 27, 2001
    Assignee: Sanyo Petrochemical Co., Ltd.
    Inventors: Masatsugu Kawase, Kouji Nomura, Yukito Nagamori, Jiro Kinoshita