Patents by Inventor Krassimir G. Marchev

Krassimir G. Marchev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200098560
    Abstract: A multi-scale manufacturing system comprising a centrally located multi-axis and multi-dimensional first manipulating component associated with a housing for manipulating a substrate and a template, a control subsystem coupled to the first manipulating component for controlling movement thereof, a pre-alignment subsystem for pre-aligning the substrate and the template, an assembly station for applying nanomaterial to the template, an alignment station for aligning the template and the substrate together to form a workpiece assembly, and a transfer subsystem for applying pressure to the workpiece assembly for transferring the nanomaterial from the template to the substrate.
    Type: Application
    Filed: November 11, 2019
    Publication date: March 26, 2020
    Inventors: Krassimir D. PETKOV, Ahmed BUSNAINA, Krassimir G. MARCHEV, Velimir DERIC, Haniel OLIVERA, Eugene BONEV
  • Publication number: 20180096841
    Abstract: A multi-scale manufacturing system comprising a centrally located multi-axis and multi-dimensional first manipulating component associated with a housing for manipulating a substrate and a template, a control subsystem coupled to the first manipulating component for controlling movement thereof, a pre-alignment subsystem for pre-aligning the substrate and the template, an assembly station for applying nanomaterial to the template, an alignment station for aligning the template and the substrate together to form a workpiece assembly, and a transfer subsystem for applying pressure to the workpiece assembly for transferring the nanomaterial from the template to the substrate.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Inventors: Krassimir D. Petkov, Ahmed Busnaina, Krassimir G. Marchev, Velimir Deric, Haniel Olivera, Eugene Bonev
  • Patent number: 8349093
    Abstract: A nitrided metal includes a metal core with a first microstructure and a nitrogen-containing solid solution region on the metal core. The nitrogen-containing solid solution region is free of nitride compounds and includes a second microstructure which is equivalent to the first microstructure. The first microstructure and the second microstructure are a tetragonal crystal structure.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: January 8, 2013
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Clark VanTine Cooper, Krassimir G. Marchev, Bill C. Giessen
  • Patent number: 7695573
    Abstract: A surface processing method and power transmission component includes transforming a surface region of a metal alloy into a hardened surface region at a temperature that is less than a heat treating temperature of the metal alloy. The metal alloy includes about 11.1 wt % Ni, about 13.4 wt % Co, about 3.0 wt % Cr, about 0.2 wt % C, and about 1.2 wt % Mo which reacts with the C to form a metal carbide precipitate of the form M2C. The surface processing temperature, vacuum pressure, precursor gas flow and ratio, and time of processing are controlled to provide a desirable hardened surface region having a gradual transition in nitrogen concentration.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: April 13, 2010
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Clark VanTine Cooper, Krassimir G. Marchev, Bill C. Giessen, Raymond C. Benn, Edward H. Bittner, Harsh Vinayak
  • Publication number: 20090246551
    Abstract: A method of nitriding a metal includes transforming a surface region of a generally nitrogen-free metal into a nitrogen-containing solid solution surface region. A first heating process heats the surface region at a first temperature in the presence of a nitrogen gas partial pressure to form a nitrogen-charged surface portion on the surface region. A second heating process heats the surface region and nitrogen-charged surface portion at a second temperature for a predetermined time to interstitially diffuse nitrogen from the nitrogen-charged surface portion a depth into the surface region. Coincident with the second heating process, an ionized inert or reducing gas removes the nitrogen-charged surface portion. The resulting nitrogen-containing solid solution surface region has a gradual transition in nitrogen concentration.
    Type: Application
    Filed: June 8, 2009
    Publication date: October 1, 2009
    Inventors: Clark VanTine Cooper, Krassimir G. Marchev, Bill C. Giessen
  • Patent number: 7556699
    Abstract: A method of nitriding a metal includes transforming a surface region of a generally nitrogen-free metal into a nitrogen-containing solid solution surface region. A first heating process heats the surface region at a first temperature in the presence of a nitrogen gas partial pressure to form a nitrogen-charged surface portion on the surface region. A second heating process heats the surface region and nitrogen-charged surface portion at a second temperature for a predetermined time to interstitially diffuse nitrogen from the nitrogen-charged surface portion a depth into the surface region. Coincident with the second heating process, an ionized inert or reducing gas removes the nitrogen-charged surface portion. The resulting nitrogen-containing solid solution surface region has a gradual transition in nitrogen concentration.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: July 7, 2009
    Inventors: Clark VanTine Cooper, Krassimir G. Marchev, Bill C. Giessen
  • Patent number: 5593514
    Abstract: Amorphous metal alloys rich in noble metals prepared by rapid solidification processing are disclosed. The alloys have at least a ternary composition having the formula M.sub.a G1.sub.b G2.sub.c, wherein M is at least one element selected from the group consisting of Ag, Au, Ru, Os, Rh, Ir, Pd, and Pt, and G1 is at least one element selected from the group consisting of B, C, Cu, Ni, Si, and Be, and G2 is at least one element selected from the group consisting of Y, the lanthanides, Zr, Hf, Ca, Mg, Ti, Nb, and Ta. The subscripts a, b, and c are atomic percentages; a ranges from 70 to 90 percent, and b and c range from 5 to 15 percent each. Preferably, a is at least 80 percent and b and c are generally equal. The amorphous metal alloys are readily glass forming and thermally stable at room temperatures.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: January 14, 1997
    Assignee: Northeastern University
    Inventors: Bill C. Giessen, Sunil V. Gokhale, Krassimir G. Marchev