Patents by Inventor Krishna Kumar Anaparthi

Krishna Kumar Anaparthi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11320794
    Abstract: An electric power system includes a generating unit, which includes a controller for controlling an operational mode of the generating unit. The electric power system also includes an event estimator communicatively coupled to the controller of the generating unit and a network estimator communicatively coupled to the event estimator. The network estimator includes a processor configured to receive status information associated with the electric power system, determine, based upon the status information, at least one characteristic of the electric power system, and transmit the at least one characteristic to the event estimator.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: May 3, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ara Panosyan, Sreedhar Desabhatla, Luca Parolini, Adolfo Anta Martinez, Naresh Acharya, Krishna Kumar Anaparthi, Scott William Szepek
  • Publication number: 20200096960
    Abstract: An electric power system includes a generating unit, which includes a controller for controlling an operational mode of the generating unit. The electric power system also includes an event estimator communicatively coupled to the controller of the generating unit and a network estimator communicatively coupled to the event estimator. The network estimator includes a processor configured to receive status information associated with the electric power system, determine, based upon the status information, at least one characteristic of the electric power system, and transmit the at least one characteristic to the event estimator.
    Type: Application
    Filed: May 23, 2017
    Publication date: March 26, 2020
    Inventors: Ara PANOSYAN, Sreedhar DESABHATLA, Luca PAROLINI, Adolfo ANTA MARTINEZ, Naresh ACHARYA, Krishna Kumar ANAPARTHI, Scott William SZEPEK
  • Patent number: 10135247
    Abstract: A method and system for use in controlling an electric network are provided. The system includes an Integrated Volt-VAr Control (IVVC) component configured to determine optimization parameters for slow dynamics electromechanical devices and fast dynamics DER devices coupled to the network. The slow dynamics devices are controlled by a present state of the electric network and a voltage rise table that is adaptively updated in real-time using a command output, or a power flow-based complete optimization routine that generates optimal setpoints for the traditional controllable assets and for at least some of the fast dynamics DER devices. The fast dynamics devices are controlled locally using a control algorithm that uses a reactive power contribution based on IVVC settings, based on photo-voltaic (PV) plant active power variations, based on power factor, or based on a voltage of the local electric network.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: November 20, 2018
    Assignee: General Electric Company
    Inventors: Rayette Ann Fisher, Wei Ren, Murali Mohan Baggu Datta Venkata Satya, Felipe Antonio Chegury Viana, Krishna Kumar Anaparthi, Reigh Allen Walling
  • Patent number: 9970417
    Abstract: This disclosure relates to systems and methods for controlling a wind converter for a weak electrical grid. In one embodiment of the disclosure, a system for controlling the wind converter includes a wind converter connected to an electrical grid at a point of connection (POC) and operable to transfer a power to the electrical grid. The system includes a first control loop operable to calculate, based on electrical grid parameters and wind converter characteristics, a voltage reference to be generated by the wind converter. The system includes a second control loop to convert, based on the electrical grid parameters, the voltage reference into a current reference. The second loop converts the angle information of the voltage reference into a voltage at the POC. The system includes a third control to regulate, based at least on the current reference, the power transferred by the wind converter to the electrical grid.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: May 15, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Zhihui Yuan, Robert Roesner, Stefan Schroeder, Ara Panosyan, Krishna Kumar Anaparthi
  • Publication number: 20170302204
    Abstract: This disclosure relates to systems and methods for controlling a wind converter for a weak electrical grid. In one embodiment of the disclosure, a system for controlling the wind converter includes a wind converter connected to an electrical grid at a point of connection (POC) and operable to transfer a power to the electrical grid. The system includes a first control loop operable to calculate, based on electrical grid parameters and wind converter characteristics, a voltage reference to be generated by the wind converter. The system includes a second control loop to convert, based on the electrical grid parameters, the voltage reference into a current reference. The second loop converts the angle information of the voltage reference into a voltage at the POC. The system includes a third control to regulate, based at least on the current reference, the power transferred by the wind converter to the electrical grid.
    Type: Application
    Filed: April 14, 2016
    Publication date: October 19, 2017
    Inventors: Zhihui Yuan, Robert Roesner, Stefan Schroeder, Ara Panosyan, Krishna Kumar Anaparthi
  • Publication number: 20150112496
    Abstract: A method and system for use in controlling an electric network are provided. The system includes an Integrated Volt-VAr Control (IVVC) component configured to determine optimization parameters for slow dynamics electromechanical devices and fast dynamics DER devices coupled to the network. The slow dynamics devices are controlled by a present state of the electric network and a voltage rise table that is adaptively updated in real-time using a command output, or a power flow-based complete optimization routine that generates optimal setpoints for the traditional controllable assets and for at least some of the fast dynamics DER devices. The fast dynamics devices are controlled locally using a control algorithm that uses a reactive power contribution based on IVVC settings, based on photo-voltaic (PV) plant active power variations, based on power factor, or based on a voltage of the local electric network.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: General Electric Company
    Inventors: Rayette Ann Fisher, Wei Ren, Murali Mohan Baggu Datta Venkata Satya, Felipe Antonio Chegury Viana, Krishna Kumar Anaparthi, Reigh Allen Walling
  • Publication number: 20130321040
    Abstract: A frequency regulation system includes a sensor to detect a power grid signal and a frequency deviation identification module to determine a power grid frequency deviation from the power grid signal. A demand response module identifies an operating schedule for available demand response resources based on frequency deviation set points and ramp rates and a load control module controls the available demand response resources based on the operating schedule.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Harjeet Johal, Krishna Kumar Anaparthi, Jason Wayne Black