Patents by Inventor Krishnakumar Sundaresan

Krishnakumar Sundaresan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10749961
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: August 18, 2020
    Assignee: General Electric Company
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, S M Shajedul Hasan
  • Publication number: 20190222651
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Application
    Filed: January 11, 2019
    Publication date: July 18, 2019
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, SM Shajedul Hasan
  • Patent number: 10218791
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: February 26, 2019
    Assignee: General Electric Company
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, S M Shajedul Hasan
  • Publication number: 20180234059
    Abstract: A system including a low noise amplifier is provided. The system further includes a coarse attenuation circuit coupled to an input of the low noise amplifier and configurable to attenuate an input signal by a coarse attenuation interval. The system also includes a fine attenuation circuit coupled in feedback with the low noise amplifier and configurable to attenuate the input signal by a fine attenuation interval, wherein the fine attenuation interval is less than the coarse attenuation interval.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Naresh Kesavan Rao, Krishnakumar Sundaresan, Nanette Judith Gruber, Bruno Hans Haider
  • Publication number: 20170187541
    Abstract: A sensor assembly includes an impedance sensor element, an impedance sensor reader and a communications module. The communications module is configured to communicate with a remote computing device. The impedance sensor reader is coupled to the impedance sensor element. The impedance sensor reader includes a synthesizer and a detector. The synthesizer is configured to output an excitation signal having known values for a plurality of signal characteristics to the impedance sensor element and to generate the excitation signal based on a plurality of direct digital synthesizer (DDS) coefficients received from the remote computing device through the communications module. The detector is coupled to the impedance sensor element and configured to detect a response of the impedance sensor element to the excitation signal and determine an impedance of the impedance sensor element based at least in part on the response of the impedance sensor element to the excitation signal.
    Type: Application
    Filed: December 29, 2015
    Publication date: June 29, 2017
    Inventors: Krishnakumar Sundaresan, Radislav Alexandrovich Potyrailo, Feng Chen, Emad Andarawis Andarawis, SM Shajedul Hasan
  • Patent number: 9472747
    Abstract: An ultrasonic transducer driving circuit configured to supply an output current and/or an output voltage to an output line for driving an ultrasonic transducer is provided. The ultrasonic transducer driving circuit includes a first current discharge circuit configured to allow a current arising from electric charges accumulated in the ultrasonic transducer to flow from the output line to ground when the output line is at a positive voltage, and a second current discharge circuit configured to allow the current arising from the electric charges accumulated in the ultrasonic transducer to flow from ground to the output line when the output line is at a negative voltage. The first current discharge circuit and the second current discharge circuit are controlled based on the output current and/or the output voltage.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: October 18, 2016
    Assignee: General Electric Company
    Inventors: Shinichi Amemiya, Bruno Haider, Krishnakumar Sundaresan
  • Patent number: 9389260
    Abstract: An impedance analyzer is provided. The analyzer includes a signal excitation generator comprising a digital to analog converter, where a transfer function of the digital to analog converter from digital to analog is programmable. The impedance analyzer further includes a receiver comprising a low noise amplifier (LNA) and an analog to digital converter (ADC), where the LNA is a current to voltage converter; where the programmable digital to analog transfer function is implemented by a direct digital synthesizer (DDS) and a voltage mode digital to analog converter, or a digital phase locked loop (PLL), or both. Further, a multivariable sensor node having an impedance analyzer is provided. Furthermore, a multivariable sensor network having a plurality of multivariable sensor nodes is provided.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: July 12, 2016
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Jeffrey Michael Ashe, Sm Shajed Hasan, Naresh Kesavan Rao, Krishnakumar Sundaresan
  • Patent number: 9369140
    Abstract: An ultrasound probe analog to digital converter includes an input successive approximation register (SAR) first stage; and an output SAR second stage in communication with the input SAR first stage. The input SAR first stage includes a programmable preamplifier integrated therein for residue amplification. The preamplifier is programmed to alternate between a linear amplifier operating mode and a comparator operating mode.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: June 14, 2016
    Assignee: General Electric Company
    Inventors: Krishnakumar Sundaresan, Naresh Kesavan Rao, Bruno Hans Haider, Christopher Robert Hazard
  • Patent number: 9147144
    Abstract: A method for multivariable measurements using a single-chip impedance analyzer includes providing a sensor, exposing the sensor to an environmental parameter, determining a complex impedance of the sensor over a measured spectral frequency range of the sensor, and monitoring at least three spectral parameters of the sensor.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 29, 2015
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, Jeffrey Michael Ashe, Sm Shajed Hasan, Naresh Kesavan Rao, Krishnakumar Sundaresan
  • Publication number: 20150053010
    Abstract: An ultrasonic transducer driving circuit configured to supply an output current and/or an output voltage to an output line for driving an ultrasonic transducer is provided. The ultrasonic transducer driving circuit includes a first current discharge circuit configured to allow a current arising from electric charges accumulated in the ultrasonic transducer to flow from the output line to ground when the output line is at a positive voltage, and a second current discharge circuit configured to allow the current arising from the electric charges accumulated in the ultrasonic transducer to flow from ground to the output line when the output line is at a negative voltage. The first current discharge circuit and the second current discharge circuit are controlled based on the output current and/or the output voltage.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 26, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Shinichi Amemiya, Bruno Haider, Krishnakumar Sundaresan
  • Publication number: 20150053011
    Abstract: An ultrasonic transducer driving circuit configured to supply an output current and/or an output voltage to an output line for driving an ultrasonic transducer is provided. The ultrasonic transducer driving circuit includes a first current discharge circuit configured to allow a current arising from electric charges accumulated in the ultrasonic transducer to flow from the output line to ground when the output line is at a positive voltage, and a second current discharge circuit configured to allow the current arising from the electric charges accumulated in the ultrasonic transducer to flow from ground to the output line when the output line is at a negative voltage. The first current discharge circuit and the second current discharge circuit are controlled based on the output current and/or the output voltage.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 26, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Shinichi Amemiya, Bruno Haider, Krishnakumar Sundaresan
  • Patent number: 8933613
    Abstract: An ultrasonic transducer driving circuit configured to supply an output current and/or an output voltage to an output line for driving an ultrasonic transducer is provided. The ultrasonic transducer driving circuit includes a first current discharge circuit configured to allow a current arising from electric charges accumulated in the ultrasonic transducer to flow from the output line to ground when the output line is at a positive voltage, and a second current discharge circuit configured to allow the current arising from the electric charges accumulated in the ultrasonic transducer to flow from ground to the output line when the output line is at a negative voltage. The first current discharge circuit and the second current discharge circuit are controlled based on the output current and/or the output voltage.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: January 13, 2015
    Assignee: General Electric Company
    Inventors: Shinichi Amemiya, Bruno Haider, Krishnakumar Sundaresan
  • Patent number: 8764662
    Abstract: A temperature management system and a method of monitoring temperature in an ultrasound imaging system is provided. The system includes an ultrasound probe. The ultrasound probe includes at least one ultrasound transducer and a plurality of application specific integrated circuits. Further, the system includes at least one temperature sensing device disposed on at least one of the plurality of application specific integrated circuits. The temperature sensing devices are disposed in such a way that the sensing devices are in thermal contact with at least one heat producing region of the ultrasound probe.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 1, 2014
    Assignee: General Electric Company
    Inventors: Bruno Hans Haider, Krishnakumar Sundaresan, Boris Constantine Joesaar
  • Publication number: 20140091811
    Abstract: A method for multivariable measurements using a single-chip impedance analyzer includes providing a sensor, exposing the sensor to an environmental parameter, determining a complex impedance of the sensor over a measured spectral frequency range of the sensor, and monitoring at least three spectral parameters of the sensor.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Jeffrey Michael Ashe, Sm Shajed Hasan, Naresh Kesavan Rao, Krishnakumar Sundaresan
  • Publication number: 20140095102
    Abstract: An impedance analyzer is provided. The analyzer includes a signal excitation generator comprising a digital to analog converter, where a transfer function of the digital to analog converter from digital to analog is programmable. The impedance analyzer further includes a receiver comprising a low noise amplifier (LNA) and an analog to digital converter (ADC), where the LNA is a current to voltage converter; where the programmable digital to analog transfer function is implemented by a direct digital synthesizer (DDS) and a voltage mode digital to analog converter, or a digital phase locked loop (PLL), or both. Further, a multivariable sensor node having an impedance analyzer is provided. Furthermore, a multivariable sensor network having a plurality of multivariable sensor nodes is provided.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Radislav Alexandrovich Potyrailo, Jeffrey Michael Ashe, Sm Shajed Hasan, Naresh Kesavan Rao, Krishnakumar Sundaresan
  • Publication number: 20140005546
    Abstract: A temperature management system and a method of monitoring temperature in an ultrasound imaging system is provided. The system includes an ultrasound probe. The ultrasound probe includes at least one ultrasound transducer and a plurality of application specific integrated circuits. Further, the system includes at least one temperature sensing device disposed on at least one of the plurality of application specific integrated circuits. The temperature sensing devices are disposed in such a way that the sensing devices are in thermal contact with at least one heat producing region of the ultrasound probe.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bruno Hans Haider, Krishnakumar Sundaresan, Boris Constantine Joesaar
  • Patent number: 8508240
    Abstract: A system and method for soft-field tomography data acquisition are provided. One system includes a plurality of transducers that correspond to a plurality of channels, and an excitation driver coupled to generate excitation signals for the plurality of transducers. The system also includes a single reference excitation source from which excitations are generated and one or more derived excitation sources. The one or more derived excitation sources derive excitations from the single reference excitation source that are applied to each of the plurality of channels. The system further includes a response detector and a reduced bit digitizer in each of the plurality of channels configured to digitize a measured response difference between the measured response at one or more of the transducers and at least one of an excitation of the single reference excitation source or an excitation derived from the single reference excitation source or a separate reference.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: Krishnakumar Sundaresan, Naresh Kesavan Rao, Alexander Seth Ross
  • Patent number: 8484599
    Abstract: Systems and techniques for performing parasitic extraction on a via array are described. If the via array is a single row or column via array, the system identifies a first via and a last via in the via array, and merges a set of vias between the first via and the last via into a center via. If the via array is a M×N (M?2, N?2) via array, the system merges the vias as follows: the first row and the last row of vias in the via array into a first row via and a last row via, respectively; the first column and the last column of vias in the via array into a first column via and a last column via, respectively; and a set of vias between the first and last rows and the first and last columns into a center via.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: July 9, 2013
    Assignee: Synopsys, Inc.
    Inventor: Krishnakumar Sundaresan
  • Patent number: 8451155
    Abstract: A transmission circuit for use with an ultrasonic probe including an ultrasonic transducer is provided. The transmission circuit includes a high voltage current DAC configured to output a drive current of an ultrasonic transducer to transmit and receive ultrasound, and a waveform generator configured to output a control signal from the high voltage current DAC to the high voltage current DAC with a predetermined timing. The control signal configured to output the drive current with a desired magnitude.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 28, 2013
    Assignee: General Electric Company
    Inventors: Shinichi Amemiya, Bruno Haider, Naresh Kesavan Rao, Krishnakumar Sundaresan, Thomas Halvorsrod
  • Publication number: 20130104658
    Abstract: An ultrasonic transducer driving circuit configured to supply an output current and/or an output voltage to an output line for driving an ultrasonic transducer is provided. The ultrasonic transducer driving circuit includes a first current discharge circuit configured to allow a current arising from electric charges accumulated in the ultrasonic transducer to flow from the output line to ground when the output line is at a positive voltage, and a second current discharge circuit configured to allow the current arising from the electric charges accumulated in the ultrasonic transducer to flow from ground to the output line when the output line is at a negative voltage. The first current discharge circuit and the second current discharge circuit are controlled based on the output current and/or the output voltage.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Inventors: Shinichi Amemiya, Bruno Haider, Krishnakumar Sundaresan