Patents by Inventor Krista Meyer

Krista Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11710539
    Abstract: A method is disclosed for predicting in advance whether a melanoma patient is likely to benefit from high dose IL2 therapy in treatment of the cancer. The method makes use of mass spectrometry data obtained from a blood-based sample of the patient and a computer configured as a classifier and making use of a reference set of mass spectral data obtained from a development set of blood-based samples from other melanoma patients. A variety of classifiers for making this prediction are disclosed, including a classifier developed from a set of blood-based samples obtained from melanoma patients treated with high dose IL2 as well as melanoma patients treated with an anti-PD-1 immunotherapy drug. The classifiers developed from anti-PD-1 and IL2 patient sample cohorts can also be used in combination to guide treatment of a melanoma patient.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: July 25, 2023
    Assignee: BIODESIX, INC.
    Inventors: Arni Steingrimsson, Carlos Oliveira, Krista Meyer, Joanna Röder, Heinrich Röder
  • Patent number: 11621057
    Abstract: A method of generating a classifier includes a step of classifying each member of a development set of samples with a class label in a binary classification scheme with a first classifier; and generating a second classifier using a classifier development process with an input classifier development set being the members of the development set assigned one of the two class labels in the binary classification scheme by the first classifier. The second classifier stratifies the members of the set with an early label into two further sub-groups. We also describe identifying a plurality of different clinical sub-groups within the development set based on the clinical data and for each of the different clinical sub-groups, conducting a classifier generation process for each of the clinical sub-groups thereby generating clinical subgroup classifiers.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: April 4, 2023
    Assignee: BIODESIX, INC.
    Inventors: Arni Steingrimsson, Joanna Röder, Julia Grigorieva, Heinrich Röder, Krista Meyer
  • Publication number: 20220108771
    Abstract: A method of generating a classifier includes a step of classifying each member of a development set of samples with a class label in a binary classification scheme with a first classifier; and generating a second classifier using a classifier development process with an input classifier development set being the members of the development set assigned one of the two class labels in the binary classification scheme by the first classifier. The second classifier stratifies the members of the set with an early label into two further sub-groups. We also describe identifying a plurality of different clinical sub-groups within the development set based on the clinical data and for each of the different clinical sub-groups, conducting a classifier generation process for each of the clinical sub-groups thereby generating clinical subgroup classifiers.
    Type: Application
    Filed: March 10, 2017
    Publication date: April 7, 2022
    Inventors: Arni Steingrimsson, Joanna Röder, Julia Grigorieva, Heinrich Röder, Krista Meyer
  • Publication number: 20210098131
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Applicant: BIODESIX, INC.
    Inventors: Joanna Roder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Ami Steingrimsson, Heinrich Roder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10950348
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: March 16, 2021
    Assignee: BIODESIX, INC.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Publication number: 20190018929
    Abstract: A method is disclosed for predicting in advance whether a melanoma patient is likely to benefit from high dose IL2 therapy in treatment of the cancer. The method makes use of mass spectrometry data obtained from a blood-based sample of the patient and a computer configured as a classifier and making use of a reference set of mass spectral data obtained from a development set of blood-based samples from other melanoma patients. A variety of classifiers for making this prediction are disclosed, including a classifier developed from a set of blood-based samples obtained from melanoma patients treated with high dose IL2 as well as melanoma patients treated with an anti-PD-1 immunotherapy drug. The classifiers developed from anti-PD-1 and IL2 patient sample cohorts can also be used in combination to guide treatment of a melanoma patient.
    Type: Application
    Filed: January 18, 2017
    Publication date: January 17, 2019
    Inventors: Arni Steingrimsson, Carlos Oliveira, Krista Meyer, Joanna Röder, Heinrich Röder
  • Publication number: 20180277249
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: May 29, 2018
    Publication date: September 27, 2018
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher
  • Patent number: 10007766
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: June 26, 2018
    Assignee: Biodesix, Inc.
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber
  • Publication number: 20170039345
    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.
    Type: Application
    Filed: July 12, 2016
    Publication date: February 9, 2017
    Inventors: Joanna Röder, Krista Meyer, Julia Grigorieva, Maxim Tsypin, Carlos Oliveira, Arni Steingrimsson, Heinrich Röder, Senait Asmellash, Kevin Sayers, Caroline Maher, Jeffrey Weber