Patents by Inventor Kristoffer K. Stokes

Kristoffer K. Stokes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10347890
    Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: July 9, 2019
    Assignee: Celgard, LLC
    Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
  • Patent number: 10240031
    Abstract: The present invention relates to surface modifying agents for polymeric and/or textile materials, methods of making and/or using a surface modifying agent to modify and functionalize polymeric and/or textile materials, and/or methods of using surface modified or functionalized polymeric and textile materials, and/or products using or incorporating surface modified or functionalized polymeric and textile materials. For example, the surface modifying agent in precursor form can be styrene sulfonyl azide monomer, polymer or copolymer capable of undergoing a chemical reaction in the presence of heat or light to form one or more styrene sulfonated nitrene monomers, polymers or copolymers, which are capable of chemically reacting with the surface of a polymeric or textile material to endow a specific or desired chemical surface functionality to the surface of a polymeric or textile material.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: March 26, 2019
    Assignee: Celgard, LLC
    Inventor: Kristoffer K. Stokes
  • Patent number: 10196495
    Abstract: A functionalized microporous, mesoporous, or nanoporous membrane, material, textile, composite, laminate, or the like, and/or a method of making or using such functionalized membranes. The functionalized porous membrane may be a functionalized microporous, mesoporous, or nanoporous membrane that has a functional molecule attached, such as a functional polymer, to the surface and/or internal fibrillar structure of the membrane.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: February 5, 2019
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Karl F. Humiston
  • Publication number: 20180358594
    Abstract: The present invention relates to new, improved or modified polymer materials, membranes, substrates, and the like and to new, improved or modified methods for permanently modifying the physical and/or chemical nature of surfaces of the polymer substrate for a variety of end uses or applications. For example, one improved method uses a carbene and/or nitrene modifier to chemically modify a functionalized polymer to form a chemical species which can chemically react with the surface of a polymer substrate and alter its chemical reactivity. Such method may involve an insertion mechanism to modify the polymer substrate to increase or decrease its surface energy, polarity, hydrophilicity or hydrophobicity, oleophilicity or oleophobicity, and/or the like in order to improve the compatibility of the polymer substrate with, for example, coatings, materials, adjoining layers, and/or the like.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Inventors: Kristoffer K. Stokes, Karl F. Humiston
  • Publication number: 20180327612
    Abstract: In one aspect, microporous membranes are described herein demonstrating composite architectures and properties suitable for electronic and/or optical applications. In some embodiments, a composite membrane described herein includes a microporous polymeric matrix or substrate having an interconnected pore structure and an index of refraction and an electrically conductive coating deposited over one or more surfaces of the microporous polymeric matrix. In other embodiments, the pores are filled and the membranes are substantially transparent.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 15, 2018
    Inventors: Karl F. Humiston, Kristoffer K. Stokes
  • Publication number: 20180323417
    Abstract: In accordance with at least selected embodiments, a battery separator or separator membrane comprises one or more co-extruded multi-microlayer membranes optionally laminated or adhered to another polymer membrane. The separators described herein may provide improved strength, for example, improved puncture strength, particularly at a certain thickness, and may exhibit improved shutdown and/or a reduced propensity to split.
    Type: Application
    Filed: November 11, 2016
    Publication date: November 8, 2018
    Inventors: Kang Karen XIAO, Eric Joseph PENEGAR, Takahiko KONDO, Robert NARK, Eric Robert WHITE, Xiaomin ZHANG, Kristoffer K. STOKES
  • Patent number: 10069126
    Abstract: The present invention relates to new, improved or modified polymer materials, membranes, substrates, and the like and to new, improved or modified methods for permanently modifying the physical and/or chemical nature of surfaces of the polymer materials, membranes, or substrates for a variety of end uses or applications. For example, one improved method uses a carbene and/or nitrene modifier to chemically modify a functionalized polymer to form a chemical species which can chemically react with the surface of a polymer substrate and alter its chemical reactivity. Furthermore, this invention can be used to produce chemically modified membranes, fibers, hollow fibers, textiles, and the like.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: September 4, 2018
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Karl F. Humiston
  • Patent number: 10030157
    Abstract: In one aspect, microporous membranes are described herein demonstrating composite architectures and properties suitable for electronic and/or optical applications. In some embodiments, a composite membrane described herein includes a microporous polymeric matrix or substrate having an interconnected pore structure and an index of refraction and an electrically conductive coating deposited over one or more surfaces of the microporous polymeric matrix. In other embodiments, the pores are filled and the membranes are substantially transparent.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: July 24, 2018
    Assignee: Celgard, LLC
    Inventors: Karl F. Humiston, Kristoffer K. Stokes
  • Publication number: 20180030224
    Abstract: Provided herein are seam tapes and related methods. The seam tapes can be compatible with polyolefin-based waterproof/breathable (w/b) membranes, including polypropylene (PP) w/b membranes and/or polyethylene (PE) w/b membranes. Also provided are seams sealed by means of these seam tapes, as well as materials, fabrics, and garments including one or more of these sealed seams.
    Type: Application
    Filed: October 4, 2017
    Publication date: February 1, 2018
    Inventors: Karl F. Humiston, Kristoffer K. Stokes, Perry K. Hancock
  • Publication number: 20170362745
    Abstract: In accordance with at least selected embodiments, the present invention is directed to novel, improved, or modified porous membranes, fibers, porous fibers, products made from such membranes, fibers or porous fibers, and/or related methods of production, use, and/or the like. In accordance with at least certain embodiments, the present invention is directed to novel, improved, or modified microporous membranes or films, fibers, microporous fibers, materials or layers made from such membranes, fibers or porous fibers, and the like for use in textile materials, garments, products, and/or textile related applications. Microporous membranes, fibers, and/or microporous fibers are made of one or more copolymers, such as block or impact copolymers, or of at least one polyolefin combined with at least one copolymer as a means of improving the hand, drape, and/or surface coefficient of friction performance properties for use in textile garments, textile materials or textile related applications.
    Type: Application
    Filed: September 5, 2017
    Publication date: December 21, 2017
    Inventors: Kristoffer K. Stokes, Xiaomin Zhang, Karl F. Humiston
  • Patent number: 9790337
    Abstract: Provided herein are seam tapes and related methods. The seam tapes can be compatible with polyolefin-based waterproof/breathable (w/b) membranes, including polypropylene (PP) w/b membranes and/or polyethylene (PE) w/b membranes. Also provided are seams sealed by means of these seam tapes, as well as materials, fabrics, and garments including one or more of these sealed seams.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: October 17, 2017
    Assignee: Celgard, LLC
    Inventors: Karl F. Humiston, Kristoffer K. Stokes, Perry K. Hancock
  • Patent number: 9783914
    Abstract: In accordance with at least selected embodiments, the present invention is directed to novel, improved, or modified porous membranes, fibers, porous fibers, products made from such membranes, fibers or porous fibers, and/or related methods of production, use, and/or the like. In accordance with at least certain embodiments, the present invention is directed to novel, improved, or modified microporous membranes or films, fibers, microporous fibers, materials or layers made from such membranes, fibers or porous fibers, and the like for use in textile materials, garments, products, and/or textile related applications. Microporous membranes, fibers, and/or microporous fibers are made of one or more copolymers, such as block or impact copolymers, or of at least one polyolefin combined with at least one copolymer as a means of improving the hand, drape, and/or surface coefficient of friction performance properties for use in textile garments, textile materials or textile related applications.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: October 10, 2017
    Assignee: Celgard, LLC
    Inventors: Kristoffer K. Stokes, Xiaomin Zhang, Karl F. Humiston
  • Patent number: 9758396
    Abstract: Disclosed herein are systems for removing particulate matter from a fluid, comprising a particle functionalized by attachment of at least one activating group or amine functional group, wherein the modified particle complexes with the particulate matter within the fluid to form a removable complex therein. The particulate matter has preferably been contacted, complexed or reacted with a tethering agent. The system is particularly advantageous to removing particulate matter from a tailing solution.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: September 12, 2017
    Assignee: Soane Mining, LLC
    Inventors: Michael C. Berg, John H. Dise, Kevin T. Petersen, David S. Soane, Kristoffer K. Stokes, William Ware, Jr., Atul C. Thakrar
  • Publication number: 20170253504
    Abstract: Disclosed herein are systems for removing particulate matter from a fluid, comprising a particle functionalized by attachment of at least one activating group or amine functional group, wherein the modified particle complexes with the particulate matter within the fluid to form a removable complex therein. The particulate matter has preferably been contacted, complexed or reacted with a tethering agent. The system is particularly advantageous to removing particulate matter from a tailing solution.
    Type: Application
    Filed: November 13, 2012
    Publication date: September 7, 2017
    Inventors: Michael C. Berg, John H. Dise, Kevin T. Petersen, David S. Soane, Kristoffer K. Stokes, William Ware, JR., Atul C. Thakrar
  • Publication number: 20170203982
    Abstract: Disclosed herein are systems for removing particulate matter from a fluid, comprising a particle functionalized by attachment of at least one activating group or amine functional group, wherein the modified particle complexes with the particulate matter within the fluid to form a removable complex therein. The particulate matter has preferably been contacted, complexed or reacted with a tethering agent. The system is particularly advantageous to removing particulate matter from a tailing solution.
    Type: Application
    Filed: January 30, 2017
    Publication date: July 20, 2017
    Inventors: Michael C. Berg, John H. Dise, Kevin T. Petersen, David S. Soane, Kristoffer K. Stokes, William Ware, JR., Atul C. Thakrar
  • Patent number: 9611156
    Abstract: Disclosed herein are systems for removing particulate matter from a fluid, comprising a particle functionalized by attachment of at least one activating group or amine functional group, wherein the modified particle complexes with the particulate matter within the fluid to form a removable complex therein. The particulate matter has preferably been contacted, complexed or reacted with a tethering agent. The system is particularly advantageous to removing particulate matter from a tailing solution.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: April 4, 2017
    Assignee: Soane Mining, LLC
    Inventors: Michael C. Berg, John H. Dise, Kevin T. Petersen, David S. Soane, Kristoffer K. Stokes, William Ware, Jr., Atul C. Thakrar
  • Publication number: 20170084898
    Abstract: Novel or improved microporous single or multilayer battery separator membranes, separators, batteries including such membranes or separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries are provided. In accordance with at least certain embodiments, a multilayer dry process polyethylene/polypropylene/polyethylene microporous separator which is manufactured using the inventive process which includes machine direction stretching followed by transverse direction stretching and a subsequent calendering step as a means to reduce the thickness of the multilayer microporous membrane, to reduce the percent porosity of the multilayer microporous membrane in a controlled manner and/or to improve transverse direction tensile strength.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 23, 2017
    Inventors: Kristoffer K. Stokes, William John Mason, Kang Karen Xiao, Xiaomin Zhang, Barry J. Summey, Robert Moran, Jeffrey Gordon Poley, Brian R. Stepp, Changqing Wang Adams, Daniel R. Alexander, Shante P. Williams, Andrew Edward Voss, Douglas George Robertson
  • Publication number: 20170033346
    Abstract: Disclosed herein are novel or improved microporous battery separator membranes, separators, batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries. Further disclosed are laminated multilayer polyolefin membranes with exterior layers comprising one or more polyethylenes, which exterior layers are designed to provide an exterior surface that has a low pin removal force. Further disclosed are battery separator membranes having increased electrolyte absorption capacity at the separator/electrode interface region, which may improve cycling. Further disclosed are battery separator membranes having improved adhesion to any number of coatings. Also described are battery separator membranes having a tunable thermal shutdown where the onset temperature of thermal shutdown may be raised or lowered and the rate of thermal shutdown may be changed or increased.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 2, 2017
    Inventors: Xiaomin Zhang, Eric Robert White, Kang Karen Xiao, Robert A. Nark, Insik Jeon, Kristoffer K. Stokes, Paul Vido, Zhengming Zhang
  • Patent number: 9499736
    Abstract: The invention relates to a class of novel surfactants that have utility in the recovery and/or extraction of oil.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: November 22, 2016
    Assignee: Soane Energy, LLC
    Inventors: Kristoffer K. Stokes, Michael C. Berg, David S. Soane, Kevin T. Petersen, John H. Dise, Atul C. Thakrar, Rosa Casado Portilla
  • Patent number: 9458040
    Abstract: Disclosed herein are systems for removing particulate matter from a fluid, comprising a particle functionalized by attachment of at least one activating group or amine functional group, wherein the modified particle complexes with the particulate matter within the fluid to form a removable complex therein. The particulate matter has preferably been contacted, complexed or reacted with a tethering agent. The system is particularly advantageous to removing particulate matter from a tailing solution.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: October 4, 2016
    Assignee: Soane Mining, LLC
    Inventors: Michael C. Berg, John H. Dise, Robert P. Mahoney, Kevin T. Petersen, David S. Soane, Kristoffer K. Stokes, William Ware, Jr., Atul C. Thakrar