Patents by Inventor Kuan-Cheng Su

Kuan-Cheng Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240168084
    Abstract: A semiconductor structure is provided. The semiconductor structure includes at least one metal gate structure and a device to be tested. The metal gate structure is disposed on a substrate. The device to be tested is disposed on the metal gate structure and electrically separated from the metal gate structure. The device to be tested is heated by a heat generated when the metal gate structure is applied with a voltage.
    Type: Application
    Filed: December 20, 2022
    Publication date: May 23, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Jih-Shun Chiang, Wen-Chun Chang, Wen-Hsiung Ko, Sung-Nien Kuo, Kuan-Cheng Su
  • Publication number: 20240162218
    Abstract: An electrostatic discharge device including a gate structure, a plurality of first doped regions, and a plurality of second doped regions. The gate structure is disposed on a substrate. The gate structure includes a body part and a plurality of extension parts. The extension parts are connected with the body part, and an extension direction of the body part is different from an extension direction of the extension parts. The first doped regions are located in the substrate between the extension parts. The second doped regions are located in the substrate at two outer sides of the extension parts. The first doped regions and the second doped regions have different conductivity types.
    Type: Application
    Filed: February 6, 2023
    Publication date: May 16, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Chih Hsiang Chang, Mei-Ling Chao, Yin-Chia Tsai, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20240112959
    Abstract: A method of fabricating a device includes forming a dummy gate over a plurality of fins. Thereafter, a first portion of the dummy gate is removed to form a first trench that exposes a first hybrid fin and a first part of a second hybrid fin. The method further includes filling the first trench with a dielectric material disposed over the first hybrid fin and over the first part of the second hybrid fin. Thereafter, a second portion of the dummy gate is removed to form a second trench and the second trench is filled with a metal layer. The method further includes etching-back the metal layer, where a first plane defined by a first top surface of the metal layer is disposed beneath a second plane defined by a second top surface of a second part of the second hybrid fin after the etching-back the metal layer.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Kuan-Ting PAN, Zhi-Chang LIN, Yi-Ruei JHAN, Chi-Hao WANG, Huan-Chieh SU, Shi Ning JU, Kuo-Cheng CHIANG
  • Patent number: 11948973
    Abstract: A method of forming a semiconductor device includes forming semiconductor strips protruding above a substrate and isolation regions between the semiconductor strips; forming hybrid fins on the isolation regions, the hybrid fins comprising dielectric fins and dielectric structures over the dielectric fins; forming a dummy gate structure over the semiconductor strip; forming source/drain regions over the semiconductor strips and on opposing sides of the dummy gate structure; forming nanowires under the dummy gate structure, where the nanowires are over and aligned with respective semiconductor strips, and the source/drain regions are at opposing ends of the nanowires, where the hybrid fins extend further from the substrate than the nanowires; after forming the nanowires, reducing widths of center portions of the hybrid fins while keeping widths of end portions of the hybrid fins unchanged, and forming an electrically conductive material around the nanowires.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Chiang, Huan-Chieh Su, Shi Ning Ju, Kuan-Ting Pan, Chih-Hao Wang
  • Publication number: 20240096883
    Abstract: A method of manufacturing a gate structure includes at least the following steps. A gate dielectric layer is formed. A work function layer is deposited on the gate dielectric layer. A barrier layer is formed on the work function layer. A metal layer is deposited on the barrier layer to introduce fluorine atoms into the barrier layer. The barrier layer is formed by at least the following steps. A first TiN layer is formed on the work function layer. A top portion of the first TiN layer is converted into a trapping layer, and the trapping layer includes silicon atoms or aluminum atoms. A second TiN layer is formed on the trapping layer.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 21, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Cheng Chen, Ching-Hwanq Su, Kuan-Ting Liu, Shih-Hang Chiu
  • Publication number: 20240088144
    Abstract: A gate structure includes a metal layer, a barrier layer, and a work function layer. The barrier layer covers a bottom surface and sidewalls of the metal layer. The barrier layer includes fluorine and silicon, or fluorine and aluminum. The barrier layer is a tri-layered structure. The work function layer surrounds the barrier layer.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ji-Cheng Chen, Ching-Hwanq Su, Kuan-Ting Liu, Shih-Hang Chiu
  • Publication number: 20230326919
    Abstract: An electrostatic discharge protection structure includes a semiconductor substrate, a gate structure disposed on the semiconductor substrate, a first well region of a first conductivity type disposed in the semiconductor substrate, a first doped region of the first conductivity type, a second doped region of a second conductivity type, a third doped region of the first conductivity type, and a fourth doped region of the second conductivity type. The first and second doped regions are disposed in the first well region and connected with each other. The second doped region is an emitter of a first bipolar junction transistor. The third and fourth doped regions are disposed in the semiconductor substrate and connected with each other. The third and second doped regions are located at two opposite sides of the gate structure in a first horizontal direction. The third doped region is an emitter of a second bipolar junction transistor.
    Type: Application
    Filed: May 11, 2022
    Publication date: October 12, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hou-Jen Chiu, Mei-Ling Chao, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20230299158
    Abstract: An electrostatic discharge (ESD) protection device includes a semiconductor substrate, a gate structure, a source doped region, a drain doped region, source silicide patterns, and drain silicide patterns. The gate structure is disposed on the semiconductor substrate. The source doped region and the drain doped region are disposed in the semiconductor substrate and located at two opposite sides of the gate structure in a first direction, respectively. The source silicide patterns are disposed on the source doped region. The source silicide patterns are arranged in a second direction and separated from one another. The drain silicide patterns are disposed on the drain doped region. The drain silicide patterns are arranged in the second direction and separated from one another. The source silicide patterns and the drain silicide patterns are arranged misaligned with one another in the first direction.
    Type: Application
    Filed: April 12, 2022
    Publication date: September 21, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kuan-Yu Lu, Hou-Jen Chiu, Mei-Ling Chao, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 11189611
    Abstract: An ESD protection semiconductor device includes a substrate. A gate set disposed on the substrate. A plurality of source fins and a plurality of drain fins having a first conductivity type are disposed in the substrate respectively at two sides of the gate set. A first doped fin is disposed in the substrate and positioned in between the source fins and spaced apart from the source fins. The first doped fin comprises a second conductivity type that is complementary to the first conductivity type. A second doped fin is formed in one of the drain fins and isolated from the one of the drain fins by an isolation structure. The second doped fin is electrically connected to the first doped fin.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: November 30, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Patent number: 11004840
    Abstract: A silicon controlled rectifier includes a substrate, an N-type well, a P-type well, a gate structure, a first N-type doped region, a second N-type doped region, a first P-type doped region, a second P-type doped region, a first STI, and a second STI. The N-type well and the P-type well are disposed in the substrate. The gate structure is disposed on the P-type well. The first N-type doped region is disposed in the N-type well at one side of the gate structure. The second N-type doped region is disposed in the P-type well at another side of the gate structure. The first P-type doped region is disposed in the N-type well. The second P-type doped region is disposed in the P-type well. The first STI is between the first N-type and first P-type doped regions. The second STI is between the second N-type and second P-type doped regions.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: May 11, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Che Yen, Tien-Hao Tang, Chun Chiang, Kuan-Cheng Su
  • Publication number: 20200235088
    Abstract: An ESD protection semiconductor device includes a substrate. A gate set disposed on the substrate. A plurality of source fins and a plurality of drain fins having a first conductivity type are disposed in the substrate respectively at two sides of the gate set. A first doped fin is disposed in the substrate and positioned in between the source fins and spaced apart from the source fins. The first doped fin comprises a second conductivity type that is complementary to the first conductivity type. A second doped fin is formed in one of the drain fins and isolated from the one of the drain fins by an isolation structure. The second doped fin is electrically connected to the first doped fin.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 23, 2020
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Patent number: 10672759
    Abstract: An ESD protection semiconductor device is disclosed. The ESD protection semiconductor device includes a substrate and a gate set disposed on the substrate. A plurality of source fins and a plurality of drain fins are formed in the substrate respectively at two sides of the gate set. At least a first doped fin is formed in the substrate at one side of the gate set the same as the source fins. A plurality of isolation structures are formed in one of the drain fins to define at least a second doped fin in the one of the drain fins. The source fins and the drain fins are of a first conductivity type. The first doped fin is of a second conductivity type that is complementary to the first conductivity type. The first doped fin and the second doped fin are electrically connected to each other.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: June 2, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Publication number: 20200144814
    Abstract: A silicon controlled rectifier includes a substrate, an N-type well, a P-type well, a gate structure, a first N-type doped region, a second N-type doped region, a first P-type doped region, a second P-type doped region, a first STI, and a second STI. The N-type well and the P-type well are disposed in the substrate. The gate structure is disposed on the P-type well. The first N-type doped region is disposed in the N-type well at one side of the gate structure. The second N-type doped region is disposed in the P-type well at another side of the gate structure. The first P-type doped region is disposed in the N-type well. The second P-type doped region is disposed in the P-type well. The first STI is between the first N-type and first P-type doped regions. The second STI is between the second N-type and second P-type doped regions.
    Type: Application
    Filed: November 27, 2018
    Publication date: May 7, 2020
    Inventors: Shih-Che Yen, Tien-Hao Tang, Chun Chiang, Kuan-Cheng Su
  • Patent number: 10629585
    Abstract: An electrostatic discharge (ESD) protection device includes a substrate, a first gate group and a second gate group on the substrate, a drain region and a fourth doped region respectively at two sides of the first gate group, a source region and the fourth doped region respectively at two sides of the second gate group, a first doped region in the substrate and surrounded by the drain region, and a second doped region in the substrate and surrounded by the fourth doped region. The drain region and the source region have a first conductivity type. The first doped region and the second doped region have a second conductivity type complementary to the first conductivity type. The drain region is electrically connected to an input/output pad. The source region is electrically connected to a ground pad. The first doped region and the second doped region are electrically connected to each other.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: April 21, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Chen Chang
  • Patent number: 10366978
    Abstract: A grounded gate NMOS transistor includes a P-type substrate, P-well region in the P-type substrate, and a gate finger traversing the P-well region. The gate finger has a first spacer on a first sidewall and a second spacer on a second sidewall opposite to the first sidewall. An N+ drain doping region is disposed in the P-type substrate and is adjacent to the first sidewall of the gate finger. The N+ drain doping region is contiguous with a bottom edge of the first spacer. An N+ source doping region is disposed in the P-type substrate opposite to the N+ drain doping region. The N+ source doping region is kept a predetermined distance from a bottom edge of the second spacer. A P+ pick-up ring is disposed in the P-well region and surrounds the gate finger, the N+ drain doping region, and the N+ source doping region.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: July 30, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Hsiang Chang, Hou-Jen Chiu, Mei-Ling Chao, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 10204897
    Abstract: An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, and at least a doped region formed in the source region. The source region and the drain region include a first conductivity type, and the doped region includes a second conductivity type complementary to the first conductivity type. The doped region is electrically connected to a ground potential.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: February 12, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Publication number: 20190006348
    Abstract: An ESD protection semiconductor device is disclosed. The ESD protection semiconductor device includes a substrate and a gate set disposed on the substrate. A plurality of source fins and a plurality of drain fins are formed in the substrate respectively at two sides of the gate set. At least a first doped fin is formed in the substrate at one side of the gate set the same as the source fins. A plurality of isolation structures are formed in one of the drain fins to define at least a second doped fin in the one of the drain fins. The source fins and the drain fins are of a first conductivity type. The first doped fin is of a second conductivity type that is complementary to the first conductivity type. The first doped fin and the second doped fin are electrically connected to each other.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 3, 2019
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Patent number: 10103136
    Abstract: An ESD protection semiconductor device includes a substrate, a gate set formed on the substrate, a source region and a drain region formed in the substrate respectively at two sides of the gate set, at least a first doped region formed in the source region, and at least a second doped region formed in the drain region. The source region, the drain region and the second doped region include a first conductivity type, and the first doped region includes a second conductivity type. The first conductivity type and the second conductivity type are complementary to each other. The second doped region is electrically connected to the first doped region. The gate set includes at least a first gate structure, a second gate structure, and a third gate structure.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: October 16, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Jui Chen, Po-Ya Lai
  • Patent number: 10090291
    Abstract: A layout structure of an ESD protection semiconductor device includes a substrate, a first doped region, a pair of second doped regions, a pair of third doped regions, at least a first gate structure formed within the first doped region, and a drain region and a first source region formed at two sides of the first gate structure. The substrate, the first doped region and the third doped regions include a first conductivity type. The second doped regions, the drain region and the first source region include a second conductivity type complementary to the first conductivity type. The first doped region includes a pair of lateral portions and a pair of vertical portions. The pair of second doped regions is formed under the pair of lateral portions, and the pair of third doped regions is formed under the pair of vertical portions.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: October 2, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Mei-Ling Chao, Tien-Hao Tang, Kuan-Cheng Su
  • Publication number: 20180269198
    Abstract: An electrostatic discharge (ESD) protection device includes a substrate, a first gate group and a second gate group on the substrate, a drain region and a fourth doped region respectively at two sides of the first gate group, a source region and the fourth doped region respectively at two sides of the second gate group, a first doped region in the substrate and surrounded by the drain region, and a second doped region in the substrate and surrounded by the fourth doped region. The drain region and the source region have a first conductivity type. The first doped region and the second doped region have a second conductivity type complementary to the first conductivity type. The drain region is electrically connected to an input/output pad. The source region is electrically connected to a ground pad. The first doped region and the second doped region are electrically connected to each other.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Inventors: Chung-Yu Huang, Kuan-Cheng Su, Tien-Hao Tang, Ping-Chen Chang