Patents by Inventor Kuei-Chang Tsai

Kuei-Chang Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230086109
    Abstract: A method of forming bottom electrodes in a resistive memory device, can include: depositing a bottom insulator on a substrate ILD; forming vias in the substrate by patterning and etching holes in the bottom insulator and the substrate ILD; filling the holes with a via metal to form a flat via surface; depositing a bottom electrode thin film and a top insulator; defining the bottom electrode; etching the top insulator, the bottom electrode thin film, and the bottom insulator; depositing a cell plate layer having a switching layer, an anode layer, and a cap layer; patterning the cell plate layer by depositing and patterning a cell plate hard mask layer, and then etching the cell plate layer; encapsulating the cell plate layer; and forming electrical contact to the cell plate layer.
    Type: Application
    Filed: August 3, 2022
    Publication date: March 23, 2023
    Inventors: John R. Jameson, Kuei-Chang Tsai
  • Patent number: 11056646
    Abstract: An integrated circuit device can include a plurality of access transistors formed in a substrate having control terminals connected to word lines that extend in a first direction; a plurality of two-terminal programmable impedance elements formed over the substrate; at least one conductive plate structure formed on and having a common conductive connection to, the programmable impedance elements, and extending in at least the first direction; a plurality of storage contacts that extend from a first current terminal of each access transistor to one of the programmable impedance elements; a plurality of bit lines formed over the at least one conductive plate structure, the bit lines extending in a second direction different from the first direction; and a plurality of bit line contacts that extend from a second current terminal of each access transistor through openings in the at least one plate structure to one of the bit lines.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: July 6, 2021
    Assignee: Adesto Technologies Corporation
    Inventors: Mark T. Ramsbey, Venkatesh P. Gopinath, Jeffrey Allan Shields, Kuei Chang Tsai, Chakravarthy Gopalan, Michael A. Van Buskirk
  • Patent number: 10497868
    Abstract: A memory element can include a first electrode; at least one switching layer formed over the first electrode; a second electrode layer; and at least one conductive cap layer formed over the second electrode layer having substantially no grain boundaries extending through to the second electrode layer; wherein the at least one switching layer is programmable between different impedance states by application of electric fields via that first and second electrode. Methods of forming such memory elements are also disclosed.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: December 3, 2019
    Assignee: Adesto Technologies Corporation
    Inventors: John Ross Jameson, III, Jeffrey Allan Shields, Kuei-Chang Tsai
  • Publication number: 20180205012
    Abstract: An integrated circuit device can include a plurality of access transistors formed in a substrate having control terminals connected to word lines that extend in a first direction; a plurality of two-terminal programmable impedance elements formed over the substrate; at least one conductive plate structure formed on and having a common conductive connection to, the programmable impedance elements, and extending in at least the first direction; a plurality of storage contacts that extend from a first current terminal of each access transistor to one of the programmable impedance elements; a plurality of bit lines formed over the at least one conductive plate structure, the bit lines extending in a second direction different from the first direction; and a plurality of bit line contacts that extend from a second current terminal of each access transistor through openings in the at least one plate structure to one of the bit lines.
    Type: Application
    Filed: July 20, 2016
    Publication date: July 19, 2018
    Inventors: Mark T. Ramsbey, Venkatesh P. Gopinath, Jeffrey Allan Shields, Kuei Chang Tsai, Chakravarthy Gopalan, Michael A. Van Buskirk
  • Publication number: 20170279045
    Abstract: A memory element can include a first electrode; at least one switching layer formed over the first electrode; a second electrode layer; and at least one conductive cap layer formed over the second electrode layer having substantially no grain boundaries extending through to the second electrode layer; wherein the at least one switching layer is programmable between different impedance states by application of electric fields via that first and second electrode. Methods of forming such memory elements are also disclosed.
    Type: Application
    Filed: April 6, 2017
    Publication date: September 28, 2017
    Inventors: John Ross Jameson, III, Jeffrey Allan Shields, Kuei-Chang Tsai
  • Patent number: 9595671
    Abstract: A method can include forming a bottom structure with a top surface and a side surface that form at least one edge; forming an opening with sloped sides through at least one insulating layer to expose at least a portion of the top surface of the bottom structure; forming a programmable layer over the at least one edge, in contact with the sloped sides of the opening and the top surface of the bottom structure; and forming a top layer over the programmable layer and opening; wherein the programmable layer is programmable between at least two different impedance states.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: March 14, 2017
    Assignee: Adesto Technologies Corporation
    Inventors: Kuei Chang Tsai, Jeffrey Allan Shields, Pascal Verrier
  • Patent number: 9412945
    Abstract: A storage element can include a bottom structure having at least one edge formed by a top surface and a side surface; a programmable layer, programmable between at least two different impedance states, and formed over the at least one edge and in contact with a portion of the bottom structure; an insulating layer that extends above the top surface of the bottom structure having an opening to the bottom structure formed therein, the opening having sloped sides; and at least one top layer formed within the opening and in contact with the programmable layer. Methods of making such a storage element are also disclosed.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 9, 2016
    Assignee: Adesto Technologies Corporation
    Inventors: Kuei Chang Tsai, Jeffrey Allan Shields, Pascal Verrier
  • Patent number: 8941089
    Abstract: In accordance with an embodiment of the present invention, a resistive switching device includes an opening disposed within a first dielectric layer, a conductive barrier layer disposed on sidewalls of the opening, a fill material including an inert material filling the opening. A solid electrolyte layer is disposed over the opening. The solid electrolyte contacts the fill material but not the conductive barrier layer. A top electrode is disposed over the solid electrolyte.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: January 27, 2015
    Assignee: Adesto Technologies Corporation
    Inventors: Chakravarthy Gopalan, Jeffrey Shields, Venkatesh Gopinath, Janet Siao-Yian Wang, Kuei-Chang Tsai
  • Patent number: 8866122
    Abstract: In one embodiment, a resistive switching device includes a bottom electrode, a switching layer, a buffer layer, and a top electrode. The switching layer is disposed over the bottom electrode. The buffer layer is disposed over the switching layer and provides a buffer of ions of a memory metal. The buffer layer includes an alloy of the memory metal with an alloying element, which includes antimony, tin, bismuth, aluminum, germanium, silicon, or arsenic. The top electrode is disposed over the buffer layer and provides a source of the memory metal.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: October 21, 2014
    Assignee: Adesto Technologies Corporation
    Inventors: Wei Ti Lee, Chakravarthy Gopalan, Yi Ma, Kuei-Chang Tsai, Jeffrey Shields, Janet Wang
  • Publication number: 20140293676
    Abstract: A memory element programmable between different impedance states can include a first electrode; a switching layer formed in contact with the first electrode and including at least one metal oxide; and a buffer layer in contact with the switching layer. A buffer layer can include a first metal, tellurium, a third element, and a second metal distributed within the buffer layer. A second electrode can be in contact with the buffer layer.
    Type: Application
    Filed: March 3, 2014
    Publication date: October 2, 2014
    Inventors: Wei Ti Lee, Janet Wang, Chakravarthy Gopalan, Jeffrey Allan Shields, Yi Ma, Kuei Chang Tsai, John Sanchez, John Ross Jameson, Michael Van Buskirk, Venkatesh P. Gopinath
  • Patent number: 7375027
    Abstract: A contact via to a surface of a semiconductor material is provided, the contact via having a sidewall which is produced by anisotropically etching a dielectric layer which is placed on via openings. A protective layer is provided on the surface of the semiconductor material. To protect the substrate, an initial etch through an interlayer dielectric is performed to create an initial via which extends toward, but not into the substrate. At least a portion of the protective layer is retained on the substrate. In another step, the final contact via is created. During this step the protective layer is penetrated to open a via to the surface of the semiconductor material.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: May 20, 2008
    Assignee: ProMOS Technologies Inc.
    Inventors: Kuei-Chang Tsai, Chunyuan Chao, Chia-Shun Hsiao
  • Patent number: 7300745
    Abstract: Nonvolatile memory wordlines (160) are formed as sidewall spacers on sidewalls of control gate structures (280). Each control gate structure may contain floating and control gates (120, 140), or some other elements. Pedestals (340) are formed adjacent to the control gate structures before the conductive layer (160) for the wordlines is deposited. The pedestals will facilitate formation of the contact openings (330.1) that will be etched in an overlying dielectric (310) to form contacts to the wordlines. The pedestals can be dummy structures. A pedestal can physically contact two wordlines.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: November 27, 2007
    Assignee: ProMOS Technologies Inc.
    Inventors: Chia-Shun Hsiao, Chunchieh Huang, Jin-Ho Kim, Kuei-Chang Tsai, Barbara Haselden, Daniel C. Wang
  • Patent number: 7297628
    Abstract: Inwardly-tapered openings are created in an Anti-Reflection Coating layer (ARC layer) provided beneath a patterned photoresist layer. The smaller, bottom width dimensions of the inwardly-tapered openings are used for defining further openings in an interlayer dielectric region (ILD) provided beneath the ARC layer. In one embodiment, the ILD separates an active layers set of an integrated circuit from its first major interconnect layer. Further in one embodiment, a taper-inducing etch recipe is used to create the inwardly-tapered ARC openings, where the etch recipe uses a mixture of CF4 and CHF3 and where the CF4/CHF3 volumetric inflow ratio is substantially less than 5 to 1, and more preferably closer to 1 to 1.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: November 20, 2007
    Assignee: Promos Technologies, Inc.
    Inventors: Chunyuan Chao, Kuei-Chang Tsai, George A. Kovall
  • Publication number: 20060211255
    Abstract: In integrated circuit fabrication, an etch is used that has a lateral component. For example, the etch may be isotropic. Before the isotropic etch of a layer (160), another etch of the same layer is performed. This other etch can be anisotropic. This etch attacks a portion (160X2) of the layer adjacent to the feature to be formed by the isotropic etch. That portion is entirely or partially removed by the anisotropic etch. Then the isotropic etch mask (420) is formed to extend beyond the feature over the location of the portion subjected to the anisotropic etch. If that portion was removed entirely, then the isotropic etch mask may completely seal off the feature to be formed on the side of that portion, so the lateral etching will not occur. If that portion was removed only partially, then the lateral undercut will be impeded because the passage to the feature under the isotropic etch mask will be narrowed.
    Type: Application
    Filed: May 10, 2006
    Publication date: September 21, 2006
    Inventors: Chunchieh Huang, Chia-Shun Hsiao, Jin-Ho Kim, Kuei-Chang Tsai, Barbara Haselden, Daniel Wang
  • Patent number: 7071115
    Abstract: In integrated circuit fabrication, an etch is used that has a lateral component. For example, the etch may be isotropic. Before the isotropic etch of a layer (160), another etch of the same layer is performed. This other etch can be anisotropic. This etch attacks a portion (160X2) of the layer adjacent to the feature to be formed by the isotropic etch. That portion is entirely or partially removed by the anisotropic etch. Then the isotropic etch mask (420) is formed to extend beyond the feature over the location of the portion subjected to the anisotropic etch. If that portion was removed entirely, then the isotropic etch mask may completely seal off the feature to be formed on the side of that portion, so the lateral etching will not occur. If that portion was removed only partially, then the lateral undercut will be impeded because the passage to the feature under the isotropic etch mask will be narrowed.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: July 4, 2006
    Assignee: ProMOS Technologies Inc.
    Inventors: Chunchieh Huang, Chia-Shun Hsiao, Jin-Ho Kim, Kuei-Chang Tsai, Barbara Haselden, Daniel C. Wang
  • Publication number: 20060079080
    Abstract: A contact via to a surface of a semiconductor material is provided, the contact via having a sidewall which is produced by anisotropically etching a dielectric layer which is placed on via openings. A protective layer is provided on the surface of the semiconductor material. To protect the substrate, an initial etch through an interlayer dielectric is performed to create an initial via which extends toward, but not into the substrate. At least a portion of the protective layer is retained on the substrate. In another step, the final contact via is created. During this step the protective layer is penetrated to open a via to the surface of the semiconductor material.
    Type: Application
    Filed: October 12, 2004
    Publication date: April 13, 2006
    Inventors: Kuei-Chang Tsai, Chunyuan Chao, Chia-Shun Hsiao
  • Patent number: 6984574
    Abstract: A cobalt silicide fabrication process entails first depositing a cobalt layer (120) on a silicon-containing EPROM region. A titanium layer (130) is formed over the cobalt layer by ionized physical vapor deposition (“IPVD”) to protect the cobalt layer from contaminant gases. Cobalt of the cobalt layer is reacted with silicon of the EPROM region to form a cobalt silicide layer (210) after which the titanium layer and any unreacted cobalt are removed. Use of IPVD to form the titanium layer by improves the step coverage to produce a better cobalt silicide layer.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: January 10, 2006
    Assignee: Mosel Vitelic, Inc.
    Inventors: Vincent Fortin, Kuei-Chang Tsai
  • Publication number: 20050170646
    Abstract: In integrated circuit fabrication, an etch is used that has a lateral component. For example, the etch may be isotropic. Before the isotropic etch of a layer (160), another etch of the same layer is performed. This other etch can be anisotropic. This etch attacks a portion (160X2) of the layer adjacent to the feature to be formed by the isotropic etch. That portion is entirely or partially removed by the anisotropic etch. Then the isotropic etch mask (420) is formed to extend beyond the feature over the location of the portion subjected to the anisotropic etch. If that portion was removed entirely, then the isotropic etch mask may completely seal off the feature to be formed on the side of that portion, so the lateral etching will not occur. If that portion was removed only partially, then the lateral undercut will be impeded because the passage to the feature under the isotropic etch mask will be narrowed.
    Type: Application
    Filed: February 4, 2004
    Publication date: August 4, 2005
    Inventors: Chunchieh Huang, Chia-Shun Hsiao, Jin-Ho Kim, Kuei-Chang Tsai, Barbara Haselden, Daniel Wang
  • Publication number: 20050170578
    Abstract: Nonvolatile memory wordlines (160) are formed as sidewall spacers on sidewalls of control gate structures (280). Each control gate structure may contain floating and control gates (120, 140), or some other elements. Pedestals (340) are formed adjacent to the control gate structures before the conductive layer (160) for the wordlines is deposited. The pedestals will facilitate formation of the contact openings (330.1) that will be etched in an overlying dielectric (310) to form contacts to the wordlines. The pedestals can be dummy structures. A pedestal can physically contact two wordlines.
    Type: Application
    Filed: February 4, 2004
    Publication date: August 4, 2005
    Inventors: Chia-Shun Hsiao, Chunchieh Huang, Jin-Ho Kim, Kuei-Chang Tsai, Barbara Haselden, Daniel Wang
  • Publication number: 20050106882
    Abstract: Inwardly-tapered openings are created in an Anti-Reflection Coating layer (ARC layer) provided beneath a patterned photoresist layer. The smaller, bottom width dimensions of the inwardly-tapered openings are used for defining further openings in an interlayer dielectric region (ILD) provided beneath the ARC layer. In one embodiment, the ILD separates an active layers set of an integrated circuit from its first major interconnect layer. Further in one embodiment, a taper-inducing etch recipe is used to create the inwardly-tapered ARC openings, where the etch recipe uses a mixture of CF4 and CHF3 and where the CF4/CHF3 volumetric inflow ratio is substantially less than 5 to 1, and more preferably closer to 1 to 1.
    Type: Application
    Filed: November 19, 2003
    Publication date: May 19, 2005
    Inventors: Chunyuan Chao, Kuei-Chang Tsai, George Kovall