Patents by Inventor Kun-Hsu LEE

Kun-Hsu LEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11824553
    Abstract: A unity-gain buffer circuit structure, used to receive an input voltage and output an output voltage, includes a first operational amplifier and a second operational amplifier. The first operational amplifier includes a first positive input, a first output and a first negative input. The second operational amplifier, coupled electrically with the first operational amplifier, includes a second positive input, a second output and a second negative input. The second positive input is used to receive the output voltage. The second output, coupled with first negative input, is used to output a second output voltage. The second negative input, coupled with the second output, is used to receive the second output voltage. After the first negative input receives the second output voltage, an offset voltage between the output voltage outputted from the first operational amplifier and the input voltage received by the first operational amplifier is close to 0.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: November 21, 2023
    Assignee: ADVANCED ANALOG TECHNOLOGY, INC.
    Inventors: Kun-Hsu Lee, Wen Jung Su
  • Publication number: 20230253977
    Abstract: A unity-gain buffer circuit structure, used to receive an input voltage and output an output voltage, includes a first operational amplifier and a second operational amplifier. The first operational amplifier includes a first positive input, a first output and a first negative input. The second operational amplifier, coupled electrically with the first operational amplifier, includes a second positive input, a second output and a second negative input. The second positive input is used to receive the output voltage. The second output, coupled with first negative input, is used to output a second output voltage. The second negative input, coupled with the second output, is used to receive the second output voltage. After the first negative input receives the second output voltage, an offset voltage between the output voltage outputted from the first operational amplifier and the input voltage received by the first operational amplifier is close to 0.
    Type: Application
    Filed: March 30, 2022
    Publication date: August 10, 2023
    Inventors: Kun-Hsu LEE, Wen Jung SU
  • Patent number: 11451216
    Abstract: A power on and power down reset circuit includes a reference voltage generation module, a monitoring voltage generation module, and a voltage comparator. The reference voltage generation module is utilized to generate a reference voltage with a first PMOS transistor, a second PMOS transistor, a third PMOS transistor, a first NMOS transistor, a second NMOS transistor, a third NMOS transistor, a first resistance, and a second resistance. The monitoring voltage generation module is utilized to generate a monitoring voltage. The voltage comparator is utilized to generate a reset voltage by comparing the reference voltage to the monitoring voltage. Thus, the power on and power down reset circuit can achieve the effect of power savings and decreasing error rate of the reset voltage.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: September 20, 2022
    Assignee: ADVANCED ANALOG TECHNOLOGY, INC.
    Inventor: Kun-Hsu Lee
  • Patent number: 10571995
    Abstract: A power-saving scanning method for a touch device is provided. Firstly, a controller is used to shorten a normal scanning time of a timer into a power-saving scanning time. Then, a counter is used to count the oscillating waveform within the power-saving scanning time to access a power-saving oscillating number. Afterward, the controller is used to convert the power-saving oscillating number into an (L-n)-digit M-bit count value, shift the (L-n)-digit M-bit count value toward the higher digit by n digits, and pad the lower digits with n zeros to form another L-digit M-bit count value so as to generate an M-bit oscillating number simulation value for the determination of touch operation.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: February 25, 2020
    Assignee: ADVANCED ANALOG TECHNOLOGY, INC.
    Inventor: Kun-Hsu Lee
  • Patent number: 10234993
    Abstract: A touch system includes a circuit board, touch pads, a control chip and an insulation board. The circuit board has a conductive board body including configuration regions. The touch pads is spaced from the configuration regions by the conductive board body. Each touch pad includes at least one touch portion. The control chip includes a multiplex module coupling the touch pads and an oscillation control module coupling the conductive board body. The oscillation control module conducts alternately the multiplex module and every touch portions to utilize a work voltage for generating a voltage oscillation wave respective to each conducted touch portion. The voltage oscillation wave is transmitted to the conductive board body. When an ion-contained liquid is on the insulation board by covering partly the conductive board body and the touch portion, a capacitance effect therebetween is forming by the work voltage, but further erased by the voltage oscillation wave.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: March 19, 2019
    Assignee: ADVANCED ANALOG TECHNOLOGY, INC.
    Inventor: Kun-Hsu Lee
  • Patent number: 10175821
    Abstract: A touch calibration system and method thereof are provided in the present invention. When a touch pad stops receiving a touch signal generated from a user to make the touch calibration system be at a calibration mode, a first step of the touch calibration method is providing a fixed count value to a counter of the touch calibration system. A second step is provided that a wave-generation module generates an oscillation wave, a counter counts an oscillation number corresponding to the oscillation wave, and a timer counts a calibration oscillation time. A third step is provided that determining whether the oscillation number achieves the fixed count value. When the oscillation number achieves the fixed count value, a storage module is received the calibration oscillation time to store the calibration oscillation time.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: January 8, 2019
    Assignee: ADVANCED ANALOG TECHNOLOGY, INC.
    Inventor: Kun-Hsu Lee
  • Publication number: 20180253186
    Abstract: A touch system includes a circuit board, touch pads, a control chip and an insulation board. The circuit board has a conductive board body including configuration regions. The touch pads is spaced from the configuration regions by the conductive board body. Each touch pad includes at least one touch portion. The control chip includes a multiplex module coupling the touch pads and an oscillation control module coupling the conductive board body. The oscillation control module conducts alternately the multiplex module and every touch portions to utilize a work voltage for generating a voltage oscillation wave respective to each conducted touch portion. The voltage oscillation wave is transmitted to the conductive board body. When an ion-contained liquid is on the insulation board by covering partly the conductive board body and the touch portion, a capacitance effect therebetween is forming by the work voltage, but further erased by the voltage oscillation wave.
    Type: Application
    Filed: April 17, 2017
    Publication date: September 6, 2018
    Inventor: Kun-Hsu LEE
  • Patent number: 9740332
    Abstract: A method of a charging calibration system is mainly to charge/discharge a reference touch pad, then to compute a reference charging time needed for a number of accumulated reference supply duties to reach a reference charging number, then to base on the reference charging time to charge/discharge one of operation touch pads repeatedly by a calibration supply duty, finally to count a number of the experienced calibration supply duties within the reference charging time. Thereupon, a reference charged number of an individual operation touch pad within the reference charging time can be obtained. Thus, the operation touch pad can adjust the reference charging time to meet various environmental requirements. Also, the reference supply duty is greater than the calibration supply duty.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: August 22, 2017
    Assignee: FEELING TECHNOLOGY CORP.
    Inventor: Kun-Hsu Lee
  • Publication number: 20170052641
    Abstract: A touch calibration system and method thereof are provided in the present invention. When a touch pad stops receiving a touch signal generated from a user to make the touch calibration system be at a calibration mode, a first step of the touch calibration method is providing a fixed count value to a counter of the touch calibration system. A second step is provided that a wave-generation module generates an oscillation wave, a counter counts an oscillation number corresponding to the oscillation wave, and a timer counts a calibration oscillation time. A third step is provided that determining whether the oscillation number achieves the fixed count value. When the oscillation number achieves the fixed count value, a storage module is received the calibration oscillation time to store the calibration oscillation time.
    Type: Application
    Filed: March 28, 2016
    Publication date: February 23, 2017
    Inventor: Kun-Hsu LEE