Patents by Inventor Kun Lung Chen

Kun Lung Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210226611
    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Chan-Hong Chern, Kun-Lung Chen
  • Patent number: 11038504
    Abstract: Devices, systems, and methods are provided for generating a high, dynamic voltage boost. An integrated circuit (IC) includes a driving circuit having a first stage and a second stage. The driving circuit is configured to provide an overdrive voltage. The IC also includes a charge pump circuit coupled between the first stage and the second stage. The charge pump circuit is configured generate a dynamic voltage greater than the overdrive voltage. The IC also includes a bootstrap circuit coupled to the charge pump circuit, configured to further dynamically boost the overdrive voltage of the driving circuit.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: June 15, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chan-Hong Chern, Tysh-Bin Liu, Kun-Lung Chen
  • Patent number: 11005453
    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Kun-Lung Chen
  • Publication number: 20210109059
    Abstract: An on-chip heater in a concentric rings configuration having non-uniform spacing between heating elements provides improved radial temperature uniformity and low power consumption compared to circular or square heating elements. On-chip heaters are suitable for integration and use with on-chip sensors that require tight temperature control.
    Type: Application
    Filed: November 30, 2020
    Publication date: April 15, 2021
    Applicant: Taiwan Semiconductor manufacturing Co., Ltd.
    Inventors: Tung-Tsun CHEN, Jui-Cheng Huang, Kun-Lung Chen, Cheng-Hsiang Hsieh
  • Patent number: 10852271
    Abstract: An on-chip heater in a concentric rings configuration having non-uniform spacing between heating elements provides improved radial temperature uniformity and low power consumption compared to circular or square heating elements. On-chip heaters are suitable for integration and use with on-chip sensors that require tight temperature control.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 1, 2020
    Inventors: Tung-Tsun Chen, Jui-Cheng Huang, Kun-Lung Chen, Cheng-Hsiang Hsieh
  • Publication number: 20200348282
    Abstract: A semiconductor device includes a circuit layer and a nanopore layer. The nanopore layer is formed on the circuit layer and is formed with a pore therethrough. The circuit layer includes a circuit unit configured to drive a biomolecule through the pore and to detect a current associated with a resistance of the nanopore layer, whereby a characteristic of the biomolecule can be determined using the currents detected by the circuit unit.
    Type: Application
    Filed: July 8, 2020
    Publication date: November 5, 2020
    Inventors: Kun-Lung Chen, Tung-Tsun Chen, Cheng-Hsiang Hsieh, Yu-Jie Huang, Jui-Cheng Huang
  • Publication number: 20200333320
    Abstract: A semiconductor device includes a circuit layer and a nanopore layer. The nanopore layer is formed on the circuit layer and is formed with a pore therethrough. The circuit layer includes a circuit unit configured to drive a biomolecule through the pore and to detect a current associated with a resistance of the nanopore layer, whereby a characteristic of the biomolecule can be determined using the currents detected by the circuit unit.
    Type: Application
    Filed: June 11, 2020
    Publication date: October 22, 2020
    Inventors: Kun-Lung Chen, Tung-Tsun Chen, Cheng-Hsiang Hsieh, Yu-Jie Huang, Jui-Cheng Huang
  • Publication number: 20200304119
    Abstract: Devices, systems, and methods are provided for generating a high, dynamic voltage boost. An integrated circuit (IC) includes a driving circuit having a first stage and a second stage. The driving circuit is configured to provide an overdrive voltage. The IC also includes a charge pump circuit coupled between the first stage and the second stage. The charge pump circuit is configured generate a dynamic voltage greater than the overdrive voltage. The IC also includes a bootstrap circuit coupled to the charge pump circuit, configured to further dynamically boost the overdrive voltage of the driving circuit.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Inventors: Chan-Hong Chern, Tysh-Bin Liu, Kun-Lung Chen
  • Patent number: 10715137
    Abstract: Devices, systems, and methods are provided for generating a high, dynamic voltage boost. An integrated circuit (IC) includes a driving circuit having a first stage and a second stage. The driving circuit is configured to provide an overdrive voltage. The IC also includes a charge pump circuit coupled between the first stage and the second stage. The charge pump circuit is configured generate a dynamic voltage greater than the overdrive voltage. The IC also includes a bootstrap circuit coupled to the charge pump circuit, configured to further dynamically boost the overdrive voltage of the driving circuit.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chan-Hong Chern, Tysh-Bin Liu, Kun-Lung Chen
  • Patent number: 10712333
    Abstract: A semiconductor device includes a circuit layer and a nanopore layer. The nanopore layer is formed on the circuit layer and is formed with a pore therethrough. The circuit layer includes a circuit unit configured to drive a biomolecule through the pore and to detect a current associated with a resistance of the nanopore layer, whereby a characteristic of the biomolecule can be determined using the currents detected by the circuit unit.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: July 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Kun-Lung Chen, Tung-Tsun Chen, Cheng-Hsiang Hsieh, Yu-Jie Huang, Jui-Cheng Huang
  • Publication number: 20200132558
    Abstract: A circuit includes a temperature-sensitive voltage divider. The temperature-sensitive voltage divider includes a temperature-sensitive resistor and a second resistor having a first terminal coupled to a first terminal of the temperature-sensitive resistor. A temperature signal is generated at a first node coupled to the first terminal of the temperature-sensitive resistor. Detection logic is coupled to the first node to generate a detection signal responsive to the temperature signal.
    Type: Application
    Filed: July 1, 2019
    Publication date: April 30, 2020
    Inventors: Chan-Hong CHERN, Kun-Lung CHEN, Ming Hsien TSAI
  • Publication number: 20200091895
    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Chan-Hong Chern, Kun-Lung Chen
  • Patent number: 10523183
    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chan-Hong Chern, Kun-Lung Chen
  • Publication number: 20190238119
    Abstract: Various embodiments of the present application are directed towards a level shifter with temperature compensation. In some embodiments, the level shifter comprises a transistor, a first resistor, and a second resistor. The first resistor is electrically coupled from a first source/drain of the transistor to a supply node, and the second resistor is electrically coupled from a second source/drain of the transistor to a reference node. Further, the first and second resistors have substantially the same temperature coefficients and comprise group III-V semiconductor material. By having both the first and second resistors, the output voltage of the level shifter is defined by the resistance ratio of the resistors. Further, since the first and second resistors have the same temperature coefficients, temperature induced changes in resistance is largely cancelled out in the ratio and the output voltage is less susceptible to temperature induced change than the first and second resistors individually.
    Type: Application
    Filed: September 25, 2018
    Publication date: August 1, 2019
    Inventors: Chan-Hong Chern, Kun-Lung Chen
  • Publication number: 20190123740
    Abstract: Devices, systems, and methods are provided for generating a high, dynamic voltage boost. An integrated circuit (IC) includes a driving circuit having a first stage and a second stage. The driving circuit is configured to provide an overdrive voltage. The IC also includes a charge pump circuit coupled between the first stage and the second stage. The charge pump circuit is configured generate a dynamic voltage greater than the overdrive voltage. The IC also includes a bootstrap circuit coupled to the charge pump circuit, configured to further dynamically boost the overdrive voltage of the driving circuit.
    Type: Application
    Filed: October 19, 2018
    Publication date: April 25, 2019
    Inventors: Chan-Hong Chern, Tysh-Bin Liu, Kun-Lung Chen
  • Publication number: 20190004027
    Abstract: A semiconductor device includes a circuit layer and a nanopore layer. The nanopore layer is formed on the circuit layer and is formed with a pore therethrough. The circuit layer includes a circuit unit configured to drive a biomolecule through the pore and to detect a current associated with a resistance of the nanopore layer, whereby a characteristic of the biomolecule can be determined using the currents detected by the circuit unit.
    Type: Application
    Filed: May 31, 2018
    Publication date: January 3, 2019
    Inventors: Kun-Lung Chen, Tung-Tsun Chen, Cheng-Hsiang Hsieh, Yu-Jie Huang, Jui-Cheng Huang
  • Publication number: 20180164246
    Abstract: An on-chip heater in a concentric rings configuration having non-uniform spacing between heating elements provides improved radial temperature uniformity and low power consumption compared to circular or square heating elements. On-chip heaters are suitable for integration and use with on-chip sensors that require tight temperature control.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Tung-Tsun CHEN, Jui-Cheng HUANG, Kun-Lung CHEN, Cheng-Hsiang HSIEH
  • Patent number: 9012967
    Abstract: Embedded memories. The devices include a substrate, a first dielectric layer, a second dielectric layer, a third dielectric layer, and a plurality of capacitors. The substrate comprises transistors. The first dielectric layer, embedding first and second conductive plugs electrically connecting the transistors therein, overlies the substrate. The second dielectric layer, comprising a plurality of capacitor openings exposing the first conductive plugs, overlies the first dielectric layer. The capacitors comprise a plurality of bottom plates, respectively disposed in the capacitor openings, electrically connecting the first conductive plugs, a plurality of capacitor dielectric layers respectively overlying the bottom plates, and a top plate, comprising a top plate opening, overlying the capacitor dielectric layers. The top plate opening exposes the second dielectric layer, and the top plate is shared by the capacitors.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: April 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Ching Lin, Chun-Yao Chen, Chen-Jong Wang, Shou-Gwo Wuu, Chung S. Wang, Chien-Hua Huang, Kun-Lung Chen, Ping Yang
  • Publication number: 20150060956
    Abstract: An integrated MEMS pressure sensor is provided, including, a CMOS substrate layer, an N+ implant doped silicon layer, a field oxide (FOX) layer, a plurality of implant doped silicon areas forming CMOS wells, a two-tier polysilicon layer with selective ion implantation forming a membrane, including an implant doped polysilicon layer and a non-doped polysilicon layer, a second non-doped polysilicon layer, a plurality of implant doped silicon areas forming CMOS source/drain, a gate poly layer made of polysilicon forming CMOS transistor gates, said CMOS wells, CMOS transistor sources/drains and CMOS gates forming CMOS transistors, an oxide layer embedded with an interconnect contact layer, a plurality of metal layers interleaved with a plurality of via hole layers, a Nitride deposition layer, an under bump metal (UBM) layer and a plurality of solder spheres. N+ implant doped silicon layer and implant doped/un-doped composition polysilicon layer forming a sealed vacuum chamber.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: WindTop Technology Corp.
    Inventor: Kun-Lung Chen
  • Publication number: 20150060955
    Abstract: An integrated MEMS microphone is provided, including, a bonding wafer layer, a bonding layer, an aluminum layer, CMOS substrate layer, an N+ implant doped silicon layer, a field oxide (FOX) layer, a plurality of implant doped silicon areas forming CMOS wells, a two-tier polysilicon layer with selective ion implantation forming a diaphragm, a plurality of implant doped silicon areas forming CMOS source/drain, a gate poly layer forming CMOS transistor gates, said CMOS wells, said CMOS transistor sources/drains and said CMOS gates forming CMOS transistors, an oxide layer embedded with an interconnect contact layer, a plurality of metal layers interleaved with a plurality of via hole layers, a Nitride deposition layer, an under bump metal (UBM) layer and a plurality of solder spheres. Diaphragm is sandwiched between a small top chamber and a small back chamber, and substrate layer includes a large back chamber.
    Type: Application
    Filed: September 3, 2013
    Publication date: March 5, 2015
    Applicant: WindTop Technology Corp.
    Inventor: Kun-Lung Chen