Patents by Inventor Kun Xue

Kun Xue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9142760
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0.05<x<0.3, 0<y<0.3, and 1:2<x:y<2:1. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: September 22, 2015
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Cui-Zu Chang, Xiao Feng, Yao-Yi Li, Jin-Feng Jia
  • Patent number: 9018617
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0<x<1, 0<y<2. Values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: April 28, 2015
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Cui-Zu Chang, Xiao Feng, Yao-Yi Li, Jin-Feng Jia
  • Publication number: 20140178674
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0.05<x<0.3, 0<y<0.3, and 1:2<x:y<2:1. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA
  • Publication number: 20140175382
    Abstract: An electrical device includes an insulating substrate and a magnetically doped TI quantum well film. The insulating substrate includes a first surface and a second surface. The magnetically doped topological insulator quantum well film is located on the first surface of the insulating substrate. A material of the magnetically doped topological insulator quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3, wherein 0<x<1, 0<y<2, and values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi, the magnetically doped topological insulator quantum well film is in 3 QL thickness to 5 QL thickness.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, YA-YU WANG, Li Lv, CUI-ZU CHANG, XIAO FENG
  • Publication number: 20140174343
    Abstract: A method for forming a topological insulator structure is provided. A strontium titanate substrate having a surface (111) is used. The surface (111) of the strontium titanate substrate is cleaned by heat-treating the strontium titanate substrate in the molecular beam epitaxy chamber. The strontium titanate substrate is heated and Bi beam, Sb beam, Cr beam, and Te beam are formed in the molecular beam epitaxy chamber in a controlled ratio achieved by controlling flow rates of the Bi beam, Sb beam, Cr beam, and Te beam. The magnetically doped topological insulator quantum well film is formed on the surface (111) of the strontium titanate substrate. The amount of the hole type charge carriers introduced by the doping with Cr is substantially equal to the amount of the electron type charge carriers introduced by the doping with Bi.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA
  • Publication number: 20140179026
    Abstract: A method for generating quantum anomalous Hall effect is provided. A topological insulator quantum well film in 3QL to 5QL is formed on an insulating substrate. The topological insulator quantum well film is doped with a first element and a second element to form the magnetically doped topological insulator quantum well film. The doping of the first element and the second element respectively introduce hole type charge carriers and electron type charge carriers in the magnetically doped topological insulator quantum well film, to decrease the carrier density of the magnetically doped topological insulator quantum well film to be smaller than or equal to 1×1013cm?2. One of the first element and the second element magnetically dopes the topological insulator quantum well film. An electric field is applied to the magnetically doped topological insulator quantum well film to decrease the carrier density.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, YA-YU WANG, LI LV, CUI-ZU CHANG, XIAO FENG
  • Publication number: 20140175373
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0<x<1, 0<y<2. Values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES, TSINGHUA UNIVERSITY
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA