Patents by Inventor Kunal DATTA

Kunal DATTA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20240048101
    Abstract: Apparatus and methods for biasing power amplifiers are provided herein. In certain embodiments, a power amplifier includes a bipolar transistor having a base biased by a bias network having a reactance that controls an impedance at the transistor base to achieve substantially flat phase response over large dynamic power levels. For example, the bias network can have a frequency response, such as a high-pass or band-pass response, that reduces the impact of power level on phase distortion (AM/PM).
    Type: Application
    Filed: July 18, 2023
    Publication date: February 8, 2024
    Inventors: Kunal Datta, Khaled A. Fayed, Edward James Anthony, Srivatsan Jayaraman, Jinghang Feng
  • Publication number: 20230402988
    Abstract: Apparatus and methods for balun transformer circuits within electronic devices are provided. In certain embodiments, balun transformer circuits are used for reduction of an impedance of a differential load line of a differential power amplifier.
    Type: Application
    Filed: June 9, 2023
    Publication date: December 14, 2023
    Inventors: Kunal Datta, Shihan Qin, Srivatsan Jayaraman
  • Patent number: 11764734
    Abstract: The disclosure relates to a signal combiner for a Doherty power amplifier architecture, the signal combiner including a termination circuit on an isolation port, the termination circuit being tuned to improve performance of the Doherty power amplifier. The architecture includes a carrier amplifier and a peaking amplifier. The peaking amplifier modulates the load seen by the carrier amplifier, allowing the carrier amplifier to remain in high-efficiency, saturated operation even at back-off. This load modulation can be achieved using impedance matching networks having an impedance matched to a specific frequency. The architectures include tuned or tailored signal combiners with termination circuits on isolation ports. The termination circuits are tuned or tailored for particular operating frequencies to enhance operation.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: September 19, 2023
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Kunal Datta, Reza Kasnavi, Aleksey A. Lyalin
  • Patent number: 11750151
    Abstract: Apparatus and methods for biasing power amplifiers are provided herein. In certain embodiments, a power amplifier includes a bipolar transistor having a base biased by a bias network having a reactance that controls an impedance at the transistor base to achieve substantially flat phase response over large dynamic power levels. For example, the bias network can have a frequency response, such as a high-pass or band-pass response, that reduces the impact of power level on phase distortion (AM/PM).
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: September 5, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Kunal Datta, Khaled A. Fayed, Edward James Anthony, Srivatsan Jayaraman, Jinghang Feng
  • Publication number: 20230222793
    Abstract: In some embodiments, the system is directed to an autonomous inspection system for electrical grid components. In some embodiments, the system collects electrical grid component data using an autonomous drone and then transmits the inspection data to one or more computers. In some embodiments, the system includes artificial intelligence that analysis the data and identifies electrical grid components defects and provides a model highlighting the defects to a user. In some embodiments, the system enables a user to train the artificial intelligence by providing feedback for models where defects or components are not properly identified.
    Type: Application
    Filed: March 14, 2023
    Publication date: July 13, 2023
    Inventors: Kunal Datta, Tony Chen, Marcella Kwan, Patrick Buckles, Michael James Locatelli, Teresa Alapat, Maria Joseph, Michael S. Glass, Jonathan Mello, Khushar Faizan, Xiwang Li, Michael Signorotti, Guilherme Mattar Bastos, Jacinto Chen, Erin Melissa Tan Antono, David Grayson, Jeffrey Mark Lovington, Laura Fehr, Charlene Chi-Johnston
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20230113416
    Abstract: An envelope tracking system has an envelope tracker that is configured to generate a power amplifier supply voltage that changes is relation to an envelope of a radio frequency signal, and a power amplifier comprises at least a first amplification stage having an input terminal receiving a radio frequency (RF) signal to be amplified. The power amplifier has a first coupling unit, and a second coupling unit inductively coupled with the first coupling unit, the second coupling unit provides radio frequency-coupled feedback to the input terminal of the first amplification stage through a radio frequency-coupled feedback path.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 13, 2023
    Inventors: Kunal Datta, Khaled A. Fayed
  • Publication number: 20230114571
    Abstract: A power amplifier comprises a first amplification stage having an input terminal receiving a radio frequency (RF) signal to be amplified and having a first coupling unit, a second amplification stage outputting an amplified radio frequency signal and having a second coupling unit and a third coupling unit providing RF feedback to the input terminal of the first amplification stage through an RF feedback path, the second coupling unit being coupled to the first coupling unit, and the third coupling unit being coupled to the first coupling unit.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 13, 2023
    Inventors: Kunal Datta, Khaled A. Fayed
  • Patent number: 11604448
    Abstract: In some embodiments, the system is directed to an autonomous inspection system for electrical grid components. In some embodiments, the system collects electrical grid component data using an autonomous drone and then transmits the inspection data to one or more computers. In some embodiments, the system includes artificial intelligence that analysis the data and identifies electrical grid components defects and provides a model highlighting the defects to a user. In some embodiments, the system enables a user to train the artificial intelligence by providing feedback for models where defects or components are not properly identified.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: March 14, 2023
    Assignee: PACIFIC GAS AND ELECTRIC COMPANY
    Inventors: Kunal Datta, Tony Chen, Marcella Kwan, Patrick Buckles, Michael James Locatelli, Teresa Alapat, Maria Joseph, Michael S. Glass, Jonathan Mello, Khushar Faizan, Xiwang Li
  • Publication number: 20230024830
    Abstract: Reconfigurable output baluns for wideband push-pull amplifiers are disclosed. In certain embodiments, a mobile device includes a transceiver that generates a first radio frequency signal of a first frequency band and a second radio frequency signal of a second frequency band, and a front-end system including a push-pull power amplifier that selectively amplifies one of the first radio frequency signal or the second radio frequency signal based on a band control signal. The push-pull power amplifier includes an input balun, an output balun, and a pair of amplifiers coupled between the input balun and the output balun. The band control signal is operable to control an impedance of the output balun.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 26, 2023
    Inventors: Kunal Datta, Hemin Wu, Shanshan Zhao, Sheikh Nijam Ali, Jinghang Feng
  • Publication number: 20230006616
    Abstract: In some embodiments, stability in power amplifiers can be achieved under high out-of-band voltage standing wave ratio condition, with an amplifier circuit that includes an amplifier having a first stage and a second stage, with each stage including an input and an output, such that the output of the first stage is coupled to the input of the second stage. The amplifier circuit further includes a stabilizing circuit implemented on the output side of the second stage and configured to provide stability in operation of the amplifier under a high out-of-band voltage standing wave ratio condition.
    Type: Application
    Filed: June 16, 2022
    Publication date: January 5, 2023
    Inventors: Kunal DATTA, Khaled A. FAYED, Edward James ANTHONY, Srivatsan JAYARAMAN
  • Publication number: 20230006622
    Abstract: In some embodiments, stability in power amplifiers can be achieved under high in-band voltage standing wave ratio condition, with an amplifier circuit that includes an amplifier having a first stage and a second stage, with each stage including an input and an output, such that the output of the first stage is coupled to the input of the second stage. The amplifier circuit further includes a stabilizing circuit implemented on the input side of the second stage and configured to provide stability in operation of the amplifier under a high in-band voltage standing wave ratio condition.
    Type: Application
    Filed: June 16, 2022
    Publication date: January 5, 2023
    Inventors: Kunal DATTA, Khaled A. FAYED, Edward James ANTHONY, Srivatsan JAYARAMAN
  • Publication number: 20230006617
    Abstract: In some embodiments, stability in power amplifiers can be achieved under high voltage standing wave ratio conditions, with an amplifier circuit that includes an amplifier having a selected stage among a plurality of stages, and either or both of a first stabilizing circuit implemented on an input side of the selected stage to provide stability in operation of the amplifier under a high in-band voltage standing wave ratio condition, and a second stabilizing circuit implemented on an output side of the selected stage to provide stability in operation of the amplifier under a high out-of-band voltage standing wave ratio condition.
    Type: Application
    Filed: June 16, 2022
    Publication date: January 5, 2023
    Inventors: Kunal DATTA, Khaled A. FAYED, Edward James ANTHONY, Srivatsan JAYARAMAN
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220376733
    Abstract: Apparatus and methods for reconfigurable power amplifiers are disclosed. In certain embodiments, a mobile device includes a transceiver configured to generate a first radio frequency signal of a first frequency band and a second radio frequency signal of a second frequency band, and a front-end system including a push-pull power amplifier configured to selectively amplify one of the first radio frequency signal or the second radio frequency signal based on a band control signal. The push-pull power amplifier includes an input balun, an output balun, and a pair of amplifiers coupled between the input balun and the output balun. The band control signal is operable to control an output capacitance of the pair of amplifiers.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 24, 2022
    Inventors: Kunal Datta, Jinghang Feng, Srivatsan Jayaraman
  • Publication number: 20220376662
    Abstract: Apparatus and methods for reconfigurable power amplifiers are disclosed. In certain embodiments, a mobile device includes a transceiver configured to generate a first radio frequency signal of a first frequency band and a second radio frequency signal of a second frequency band, and a front-end system including a push-pull power amplifier configured to selectively amplify one of the first radio frequency signal or the second radio frequency signal based on a band control signal. The push-pull power amplifier includes an input balun, an output balun, and a pair of amplifiers coupled between the input balun and the output balun. The band control signal is operable to control an input capacitance of the pair of amplifiers.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 24, 2022
    Inventors: Kunal Datta, Jinghang Feng, Srivatsan Jayaraman
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220006426
    Abstract: Apparatus and methods for biasing power amplifiers are provided herein. In certain embodiments, a power amplifier includes a bipolar transistor having a base biased by a bias network having a reactance that controls an impedance at the transistor base to achieve substantially flat phase response over large dynamic power levels. For example, the bias network can have a frequency response, such as a high-pass or band-pass response, that reduces the impact of power level on phase distortion (AM/PM).
    Type: Application
    Filed: June 14, 2021
    Publication date: January 6, 2022
    Inventors: Kunal Datta, Khaled A. Fayed, Edward James Anthony, Srivatsan Jayaraman, Jinghang Feng
  • Publication number: 20210384868
    Abstract: The disclosure relates to a signal combiner for a Doherty power amplifier architecture, the signal combiner including a termination circuit on an isolation port, the termination circuit being tuned to improve performance of the Doherty power amplifier. The architecture includes a carrier amplifier and a peaking amplifier. The peaking amplifier modulates the load seen by the carrier amplifier, allowing the carrier amplifier to remain in high-efficiency, saturated operation even at back-off. This load modulation can be achieved using impedance matching networks having an impedance matched to a specific frequency. The architectures include tuned or tailored signal combiners with termination circuits on isolation ports. The termination circuits are tuned or tailored for particular operating frequencies to enhance operation.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: Kunal DATTA, Reza KASNAVI, Aleksey A. LYALIN