Patents by Inventor Kunal Paralikar

Kunal Paralikar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11770016
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Grant
    Filed: April 2, 2021
    Date of Patent: September 26, 2023
    Assignee: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie R. Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 11752355
    Abstract: Techniques for estimating the temperature of an external portion of a medical device are described. In an example, processing circuitry may determine a temperature sensed by at least one temperature sensor of an internal portion of the device, and determine, based on an algorithm that incorporates the temperature of the internal portion of the device, an estimated temperature of a second portion of the device, wherein the algorithm is representative of an estimated temperature difference between the first portion of the device and the second portion of the device based at least in part on a dynamic transfer function that operates in a time-domain.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: September 12, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Kunal Paralikar, Brett Otteson, Yohan Kim
  • Publication number: 20220134116
    Abstract: Techniques for estimating the temperature of an external portion of a medical device are described. In an example, processing circuitry may determine a temperature sensed by at least one temperature sensor of an internal portion of the device, and determine, based on an algorithm that incorporates the temperature of the internal portion of the device, an estimated temperature of a second portion of the device, wherein the algorithm is representative of an estimated temperature difference between the first portion of the device and the second portion of the device based at least in part on a dynamic transfer function that operates in a time-domain.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Inventors: Andrew T. Fried, Venkat R. Gaddam, Kunal Paralikar, Brett Otteson, Yohan Kim
  • Publication number: 20210226471
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Application
    Filed: April 2, 2021
    Publication date: July 22, 2021
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie R. Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 10971943
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: April 6, 2021
    Assignee: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Publication number: 20200136417
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 30, 2020
    Applicant: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 10554069
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 4, 2020
    Assignee: Medtronic, Inc.
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Publication number: 20190190296
    Abstract: Devices, systems, and techniques for monitoring the temperature of a device used to charge a rechargeable power source are disclosed. Implantable medical devices may include a rechargeable power source that can be transcutaneously charged. The temperature of an external charging device and/or an implantable medical device may be monitored to control the temperature exposure to patient tissue during a charging session used to recharge the rechargeable power source. In one example, a temperature sensor may sense a temperature of an internal portion of a device, wherein the housing of the device is not directly thermally coupled to the temperature sensor. A temperature for the housing of the device may then be estimated based on the sensed temperature provided by the non-thermally coupled temperature sensor. A processor may then control charging of the rechargeable power source based on the determined temperature for the housing.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 20, 2019
    Inventors: Kunal Paralikar, Elizabeth A. Fehrmann, Venkat R. Gaddam, Boysie Morgan, David P. Olson, Jadin C. Jackson
  • Patent number: 10258804
    Abstract: Devices, systems, and techniques are configured for cooling tissue during recharge of an implantable medical device (IMD) battery. In one example, a method includes charging, by an inductive charger, a rechargeable battery of an implantable medical device (IMD) within a patient, wherein the IMD comprises a housing that houses the rechargeable battery, and wherein a primary coil of the inductive charger is positioned above a region of skin of the patient proximate to the IMD. The example method further includes cooling, by a heat exchanger, the region of skin below a normal ambient surface temperature of the region of skin, wherein the heat exchanger is interposed between the primary coil and the region of skin.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: April 16, 2019
    Assignee: Medtronic, Inc.
    Inventors: Erik R. Scott, Kunal Paralikar
  • Publication number: 20180126177
    Abstract: Devices, systems, and techniques are configured for cooling tissue during recharge of an implantable medical device (IMD) battery. In one example, a method includes charging, by an inductive charger, a rechargeable battery of an implantable medical device (IMD) within a patient, wherein the IMD comprises a housing that houses the rechargeable battery, and wherein a primary coil of the inductive charger is positioned above a region of skin of the patient proximate to the IMD. The example method further includes cooling, by a heat exchanger, the region of skin below a normal ambient surface temperature of the region of skin, wherein the heat exchanger is interposed between the primary coil and the region of skin.
    Type: Application
    Filed: November 4, 2016
    Publication date: May 10, 2018
    Inventors: Erik R. Scott, Kunal Paralikar
  • Publication number: 20150375006
    Abstract: A method for delivering optical stimulation comprises transfecting a target tissue with a light-sensitive channel protein sensitive to light in a wavelength range, delivering light in the wavelength range to the target tissue via an optical stimulation device, substantially simultaneously with delivering light to the target tissue, sensing bioelectric signals, determining a patient therapeutic state based on the bioelectric signals, and adjusting the delivery of the light to the target tissue based on the sensed patient therapeutic state.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 31, 2015
    Inventors: Timothy J. Denison, Kunal Paralikar, Gordon Orvis Munns, Wesley A. Santa, Peng Cong, Christian S. Nielsen, John D. Norton, John G. Keimel
  • Patent number: 8936630
    Abstract: Methods of delivering optical stimulation to a target tissue from an optical stimulation device are provided. One method comprises sensing a temperature at the optical stimulation device or proximate to the optical stimulation device, and adjusting the delivery of light to the target tissue based on the sensed temperature. Another method comprises delivering the light to the target tissue with an optical light guide and sensing bioelectric signals with a sense electrode, wherein the optical light guide and the sense electrode each comprise a material that produces substantially no induced current in an electromagnetic field. Another method comprises delivering light from a light source of an optical stimulation device to a window of the optical stimulation device, delivering the light from the window to an optical light guide optically connected to the window, and delivering the light to a target tissue via the optical light guide.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: January 20, 2015
    Assignee: Medtronic, Inc.
    Inventors: Timothy J. Denison, Kunal Paralikar, Gordon O. Munns, Wesley A. Santa, Peng Cong, Christian S. Nielsen, John D. Norton
  • Publication number: 20110125078
    Abstract: A method for delivering optical stimulation comprises transfecting a target tissue with a light-sensitive channel protein sensitive to light in a wavelength range, delivering light in the wavelength range to the target tissue via an optical stimulation device, substantially simultaneously with delivering light to the target tissue, sensing bioelectric signals, determining a patient therapeutic state based on the bioelectric signals, and adjusting the delivery of the light to the target tissue based on the sensed patient therapeutic state.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Applicant: Medtronic, Inc.
    Inventors: Timothy J. Denison, Kunal Paralikar, Gordon O. Munns, Wesley A. Santa, Peng Cong, Christian S. Nielsen, John D. Norton, John G. Keimel
  • Publication number: 20110125077
    Abstract: Methods of delivering optical stimulation to a target tissue from an optical stimulation device are provided. One method comprises sensing a temperature at the optical stimulation device or proximate to the optical stimulation device, and adjusting the delivery of light to the target tissue based on the sensed temperature. Another method comprises delivering the light to the target tissue with an optical light guide and sensing bioelectric signals with a sense electrode, wherein the optical light guide and the sense electrode each comprise a material that produces substantially no induced current in an electromagnetic field. Another method comprises delivering light from a light source of an optical stimulation device to a window of the optical stimulation device, delivering the light from the window to an optical light guide optically connected to the window, and delivering the light to a target tissue via the optical light guide.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Applicant: Medtronic, Inc.
    Inventors: Timothy J. Denison, Kunal Paralikar, Gordon O. Munns, Wesley A. Santa, Peng Cong, Christian S. Nielsen, John D. Norton