Patents by Inventor Kunihiko Sasakura

Kunihiko Sasakura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8634121
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: January 21, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fusao Shimokawa, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Patent number: 8582189
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: November 12, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fusao Shimokawa, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Patent number: 8462410
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: June 11, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fusao Shimokawa, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Publication number: 20120162737
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Inventors: Shingo Uchiyama, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Publication number: 20120162735
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Inventors: Shingo Uchiyama, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Publication number: 20120162736
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Application
    Filed: March 5, 2012
    Publication date: June 28, 2012
    Inventors: Shingo UCHIYAMA, Johji YAMAGUCHI, Makoto SATO, Kunihiko SASAKURA, Hirofumi MORITA, Shuichiro INAGAKI, Katsuyuki MACHIDA, Hiromu ISHII, Makoto MURAKAMI
  • Patent number: 8149490
    Abstract: When a light intensity upon a perturbation is detected, an error calculation/correction unit (85) in a control unit (8) corrects and updates the above-described initial manipulated variables based on perturbation manipulated variables and manipulated variables, i.e., operation manipulated variables to obtain the maximum light intensity from the light intensity value at each perturbation manipulated variable, thereby adjusting the tilt angle of a mirror. More specifically, assuming that the time series data of an acquired output light intensity can be approximated to a cosine function, the error calculation/correction unit (85) calculates a phase difference ? between the cosine function and a sine or cosine function used to set x- and y-axis perturbation patterns for a circular trajectory perturbation. Manipulated variables at coordinates defined by the phase difference ? and polar coordinates of a radius voltage to perturb the mirror are calculated.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: April 3, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Masato Mizukami, Johji Yamaguchi, Naru Nemoto, Kunihiko Sasakura
  • Patent number: 8149489
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: April 3, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Fusao Shimokawa, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii, Makoto Murakami
  • Patent number: 7978388
    Abstract: When a mirror (230) rotates with a maximum angle, a distance from the rotation center of the mirror (230) to the edge of the mirror (230) along a direction horizontal to an electrode substrate (300) is larger than a distance from a perpendicular, perpendicular to the horizontal direction and extending through the rotation center, to the distal end of an electrode (340a-340d) along the horizontal direction. Even when the mirror (230) rotates to come into contact with the electrode substrate (300), since the electrode (340a-340d) does not exist at a position with which the mirror (230) comes into contact when rotating, the mirror (230) and the electrode (340a-340d) can be prevented from being electrodeposited.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: July 12, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shingo Uchiyama, Fusao Shimokawa, Johji Yamaguchi, Kunihiko Sasakura, Hiromu Ishii
  • Publication number: 20090323149
    Abstract: When a light intensity upon a perturbation is detected, an error calculation/correction unit (85) in a control unit (8) corrects and updates the above-described initial manipulated variables based on perturbation manipulated variables and manipulated variables, i.e., operation manipulated variables to obtain the maximum light intensity from the light intensity value at each perturbation manipulated variable, thereby adjusting the tilt angle of a mirror. More specifically, assuming that the time series data of an acquired output light intensity can be approximated to a cosine function, the error calculation/correction unit (85) calculates a phase difference ? between the cosine function and a sine or cosine function used to set x- and y-axis perturbation patterns for a circular trajectory perturbation. Manipulated variables at coordinates defined by the phase difference ? and polar coordinates of a radius voltage to perturb the mirror are calculated.
    Type: Application
    Filed: August 20, 2007
    Publication date: December 31, 2009
    Inventors: Masato Mizukami, Johji Yamaguchi, Naru Nemoto, Kunihiko Sasakura
  • Publication number: 20090244676
    Abstract: When a mirror (230) rotates with a maximum angle, a distance from the rotation center of the mirror (230) to the edge of the mirror (230) along a direction horizontal to an electrode substrate (300) is larger than a distance from a perpendicular, perpendicular to the horizontal direction and extending through the rotation center, to the distal end of an electrode (340a-340d) along the horizontal direction. Even when the mirror (230) rotates to come into contact with the electrode substrate (300), since the electrode (340a-340d) does not exist at a position with which the mirror (230) comes into contact when rotating, the mirror (230) and the electrode (340a-340d) can be prevented from being electrodeposited.
    Type: Application
    Filed: December 27, 2006
    Publication date: October 1, 2009
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shingo Uchiyama, Fusao Shimokawa, Johji Yamaguchi, Kunihiko Sasakura, Hiromu Ishii
  • Publication number: 20080100899
    Abstract: A mirror device includes a mirror (153) which is supported to be pivotable with respect to a mirror substrate (151), a driving electrode (103-1-103-4) which is formed on an electrode substrate (101) facing the mirror substrate, and an antistatic structure (106) which is arranged in a space between the mirror and the electrode substrate. This structure can fix the potential of the lower surface of the mirror and suppress drift of the mirror by applying a second potential to the antistatic structure.
    Type: Application
    Filed: December 28, 2005
    Publication date: May 1, 2008
    Inventors: Fusao Shimokawa, Shingo Uchiyama, Johji Yamaguchi, Makoto Sato, Kunihiko Sasakura, Hirofumi Morita, Shuichiro Inagaki, Katsuyuki Machida, Hiromu Ishii
  • Patent number: 6877906
    Abstract: An optical connector plug according to the present invention which is joined to a front end of an optical fiber cord covering an optical fiber and which is removably inserted to one end of an optical adapter having a locking member for locking the optical connector plug in an engaged state, includes an inserted portion removably inserted to one end of the optical adapter, a plug body joined to a front end of the optical fiber cord, a locking portion formed between the plug body and the inserted portion and locked by the locking member of the optical adapter, and a rotational phase reference surface formed on the plug body away from the locking portion. The optical connector plug according to the present invention can be applied to APC optical connector plug, secure high reliability for optical cross-connecting, and also reduce cost.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: April 12, 2005
    Assignee: Nippon Telegraph and Telephone
    Inventors: Masato Mizukami, Kunihiko Sasakura, Kazumasa Kaneko, Yoshitaka Enomoto
  • Publication number: 20040076377
    Abstract: An optical connector plug according to the present invention which is joined to a front end of an optical fiber cord covering an optical fiber and which is removably inserted to one end of an optical adapter having a locking member for locking the optical connector plug in an engaged state, includes an inserted portion removably inserted to one end of the optical adapter, a plug body joined to a front end of the optical fiber cord, a locking portion formed between the plug body and the inserted portion and locked by the locking member of the optical adapter, and a rotational phase reference surface formed on the plug body away from the locking portion. The optical connector plug according to the present invention can be applied to APC optical connector plug, secure high reliability for optical cross-connecting, and also reduce cost.
    Type: Application
    Filed: August 26, 2003
    Publication date: April 22, 2004
    Applicant: Nippon Telegraph and Telephone Corporation
    Inventors: Masato Mizukami, Kunihiko Sasakura, Kazumasa Kaneko, Yoshitaka Enomoto
  • Patent number: 5770001
    Abstract: An automatic assembly and inspection system for optical connectors is provided, which is highly reliable and which can produce economical and highly-effective optical cords or cables with optical connectors.
    Type: Grant
    Filed: February 23, 1996
    Date of Patent: June 23, 1998
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Akira Nagayama, Takashi Yoshizawa, Kunihiko Sasakura, Tadao Saitoh, Sigemitu Oguchi
  • Patent number: 5204921
    Abstract: In an optical MDF (main distributing frame) for interconnecting external subscriber optical lines (122) with office optical lines (131) through jumpering operation, a matrix waveguide (128, 129, 130) having a plurality of crosspoints coupled with external lines and office lines is used. The matrix waveguide has a groove (235 in FIG. 4A) at each crosspoint so that said crosspoint is switched ON or OFF depending upon whether said groove is filled with matching oil or not, so that one of the external lines is connected to the selected office line. Said matching oil has the same refractive index as that of waveguides. Each crosspoint groove is coupled with a respective oil pool (236), which supplies matching oil which has essentially the same refractive index as that of a waveguide to said groove.
    Type: Grant
    Filed: January 7, 1992
    Date of Patent: April 20, 1993
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tsuneo Kanai, Shigefumi Hosokawa, Kunihiko Sasakura, Syuichirou Inagaki, Shigeru Umemura, Hirobumi Kimura, Akira Nagayama, Mitsuhiro Makihara, Masao Kawachi