Patents by Inventor Kunihiko Tsukagoshi

Kunihiko Tsukagoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6731169
    Abstract: The first amplifier circuit D1 is formed by connecting drains of a pair of N-channel MOS transistors forming the first current mirror circuit CM1 respectively to the drains of P-channel MOS transistors 1 and 2 as a differential input portion, and the second amplifier circuit D2 is formed by connecting drains of a pair of P-channel MOS transistors forming the second current mirror circuit CM2 respectively to the drains of N-channel MOS transistors 5 and 6 as a differential amplifier circuit. The first and second differential amplifier circuits D1 and D2 can amplify the first and second signals having cycles corresponding with each other with their duty ratios kept unchanged regardless of their operating point potentials. Further, the two outputs are combined into one output to suppress variation of the operating point potential of the output attributable to process-related factors, fluctuation of the power supply potential due to the oscillating operation and the like.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: May 4, 2004
    Assignee: Nippon Precision Circuits
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Publication number: 20030095004
    Abstract: The first amplifier circuit D1 is formed by connecting drains of a pair of N-channel MOS transistors forming the first current mirror circuit CM1 respectively to the drains of P-channel MOS transistors 1 and 2 as a differential input portion, and the second amplifier circuit D2 is formed by connecting drains of a pair of P-channel MOS transistors forming the second current mirror circuit CM2 respectively to the drains of N-channel MOS transistors 5 and 6 as a differential amplifier circuit. The first and second differential amplifier circuits D1 and D2 can amplify the first and second signals having cycles corresponding with each other with their duty ratios kept unchanged regardless of their operating point potentials. Further, the two outputs are combined into one output to suppress variation of the operating point potential of the output attributable to process-related factors, fluctuation of the power supply potential due to the oscillating operation and the like.
    Type: Application
    Filed: December 20, 2002
    Publication date: May 22, 2003
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6556094
    Abstract: An oscillator circuit adapted for a piezoelectric oscillator which has a weak oscillation output for generating high frequencies is provided. The speed of operation of the oscillator circuit is increased. An integrated circuit for such an oscillator circuit is also provided. The oscillator circuit has an amplifier portion consisting of CMOS inverters connected in cascade. MOS transistors forming the CMOS inverters have channel widths that decrease successively from the first stage to the last stage to improve the amplification factor of the amplifier portion at high frequencies. This makes it possible to amplify weak oscillation output from the quartz oscillator (XL). A filter circuit produces a peak of negative resistance at a frequency higher than conventional. This permit oscillation operation at higher frequencies.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: April 29, 2003
    Assignee: Nippon Precision Circuits Inc.
    Inventors: Eiichi Hasegawa, Masahisa Kimura, Kazuhisa Oyama, Kunihiko Tsukagoshi
  • Publication number: 20020125965
    Abstract: An oscillator circuit adapted for a piezoelectric oscillator which has a weak oscillation output for generating high frequencies is provided. The speed of operation of the oscillator circuit is increased. An integrated circuit for such an oscillator circuit is also provided. The oscillator circuit has an amplifier portion consisting of CMOS inverters connected in cascade. MOS transistors forming the CMOS inverters have channel widths that decrease successively from the first stage to the last stage to improve the amplification factor of the amplifier portion at high frequencies. This makes it possible to amplify weak oscillation output from the quartz oscillator (XL). A filter circuit produces a peak of negative resistance at a frequency higher than conventional. This permit oscillation operation at higher frequencies.
    Type: Application
    Filed: October 26, 2001
    Publication date: September 12, 2002
    Inventors: Eiichi Hasegawa, Masahisa Kimura, Kazuhisa Oyama, Kunihiko Tsukagoshi
  • Patent number: 6411172
    Abstract: There is disclosed an oscillator circuit in which the first capacitor is connected between the input side of a CMOS inverter in a quartz oscillator circuit and a higher potential side, the second load capacitor is connected between the input side of the inverter and a lower potential side, the third load capacitor is connected between the output side of the inverter and the higher potential side, and the fourth load capacitor is connected between the output side of the inverter and the lower potential side, so that variation in amplitudes of the voltage sources synchronized with the oscillation can be reduced with the realization of lower current consumption. There is also disclosed an oscillator circuit of reduced circuit scale. A CMOS inverter for producing oscillations, an AC coupling capacitor, and a buffer circuit are formed on one chip. A protective circuit that has been heretofore required at the input terminal portion of the buffer circuit can be dispensed with.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: June 25, 2002
    Assignee: Nippon Precision Circuits, Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6329884
    Abstract: There is disclosed an oscillator circuit in which the first capacitor is connected between the input side of a CMOS inverter in a quartz oscillator circuit and a higher potential side, the second load capacitor is connected between the input side of the inverter and a lower potential side, the third load capacitor is connected between the output side of the inverter and the higher potential side, and the fourth load capacitor is connected between the output side of the inveter and the lower potential side, so that variation in amplitudes of the voltage sources synchronized with the oscillation can be reduced with the realization of lower current consumption.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: December 11, 2001
    Assignee: Nippon Precision Circuits, Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Publication number: 20010020876
    Abstract: There is disclosed an oscillator circuit in which the first capacitor is connected between the input side of a CMOS inverter in a quartz oscillator circuit and a higher potential side, the second load capacitor is connected between the input side of the inverter and a lower potential side, the third load capacitor is connected between the output side of the inverter and the higher potential side, and the fourth load capacitor is connected between the output side of the inverter and the lower potential side, so that variation in amplitudes of the voltage sources synchronized with the oscillation can be reduced with the realization of lower current consumption.
    Type: Application
    Filed: January 3, 2001
    Publication date: September 13, 2001
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Publication number: 20010013810
    Abstract: The first amplifier circuit D1 is formed by connecting drains of a pair of N-channel MOS transistors forming the first current mirror circuit CM1 respectively to the drains of P-channel MOS transistors 1 and 2 as a differential input portion, and the second amplifier circuit D2 is formed by connecting drains of a pair of P-channel MOS transistors forming the second current mirror circuit CM2 respectively to the drains of N-channel MOS transistors 5 and 6 as a differential amplifier circuit. The first and second differential amplifier circuits D1 and D2 can amplify the first and second signals having cycles corresponding with each other with their duty ratios kept unchanged regardless of their operating point potentials. Further, the two outputs are combined into one output to suppress variation of the operating point potential of the output attributable to process-related factors, fluctuation of the power supply potential due to the oscillating operation and the like.
    Type: Application
    Filed: April 20, 2001
    Publication date: August 16, 2001
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6242980
    Abstract: The first amplifier circuit D1 is formed by connecting drains of a pair of N-channel MOS transistors forming the first current mirror circuit CM1 respectively to the drains of P-channel MOS transistors 1 and 2 as a differential input portion, and the second amplifier circuit D2 is formed by connecting drains of a pair of P-channel MOS transistors forming the second current mirror circuit CM2 respectively to the drains of N-channel MOS transistors 5 and 6 as a differential amplifier circuit. The first and second differential amplifier circuits D1 and D2 can amplify the first and second signals having cycles corresponding with each other with their duty ratios kept unchanged regardless of their operating point potentials. Further, the two outputs are combined into one output to suppress variation of the operating point potential of the output attributable to process-related factors, fluctuation of the power supply potential due to the oscillating operation and the like.
    Type: Grant
    Filed: November 18, 1998
    Date of Patent: June 5, 2001
    Assignee: Nippon Precision Circuits
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6191661
    Abstract: There is disclosed an oscillator circuit in which the first capacitor is connected between the input side of a CMOS inverter in a quartz oscillator circuit and a higher potential side, the second load capacitor is connected between the input side of the inverter and a lower potential side, the third load capacitor is connected between the output side of the inverter and the higher potential side, and the fourth load capacitor is connected between the output side of the inverter and the lower potential side, so that variation in amplitudes of the voltage sources synchronized with the oscillation can be reduced with the realization of lower current consumption. There is also disclosed an oscillator circuit of reduced circuit scale. A CMOS inverter for producing oscillations an AC coupling capacitor, and a buffer circuit are formed on one chip. A protective circuit that has been heretofore required at the input terminal portion of the buffer circuit can be dispensed with.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: February 20, 2001
    Assignee: Nippon Precision Circuits, Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6072333
    Abstract: The drains of P- and N-channel MOS transistors 1 and 2 are connected to each other. An output terminal is formed at the node of the drains. Each of first and second amplifier stages 4 and 5 is configured by cascading an n number of CMOS inverters. The amplifier stages drive first and second last-stage CMOS inverters 6 and 7 to drive the P- and N-channel MOS transistors 1 and 2, respectively. A dummy CMOS inverter 8 is disposed so that the input is connected to the node of the second amplifier stage 5 and the second last-stage CMOS inverter 7. The load of the second amplifier stage 5 is equal to that of the first amplifier stage 4. The drivabilities of the CMOS inverters of the same stage in the first and second amplifier stages 4 and 5 are made equal to each other. According to this configuration, the number of CMOS inverters which must be checked in a process of adjusting the duty can be reduced.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: June 6, 2000
    Assignee: Nippon Precision Circuits, Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama
  • Patent number: 6025757
    Abstract: There is disclosed an oscillator circuit comprising the first load capacitor with one electrode there of being connected with an input side of a CMOS inverter within a quartz oscillator circuit, and the second load capacitor with one electrode there of being connected with the output side of the inverter, wherein the inverter is coupled to a lower potential side via a current-limiting device, and the other electrodes of the first and second load capacitors are coupled to a lower potential side via the above-described current-limiting device. Thus, variations in the power-supply voltages synchronized with oscillation are reduced with realization of lower current consumption.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: February 15, 2000
    Assignee: Nippon Precision Circuits Inc.
    Inventors: Kunihiko Tsukagoshi, Satoru Miyabe, Kazuhisa Oyama