Patents by Inventor Kuninori Hattori

Kuninori Hattori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8971677
    Abstract: An optical 90-degree hybrid circuit includes: first and second optical splitters for receiving and splitting a first and second light beam into two, respectively; a first optical coupler for generating an interfering light beam by multiplexing one of the light beams split by the first optical splitter and the second optical splitter; and a second optical coupler for generating an interfering light beam by multiplexing another one of the light beams split by the first optical splitter and the second optical splitter. The first optical splitter includes an optical coupler configured to output two light beams having equal phases, and the second optical splitter includes an optical coupler configured to output two light beams having a phase difference of 90 degrees.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 3, 2015
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yohei Sakamaki, Toshikazu Hashimoto, Yusuke Nasu, Kuninori Hattori, Hiroshi Takahashi
  • Patent number: 8649640
    Abstract: The present invention provides an optical 90-degree hybrid circuit for reducing wavelength dependency of an IQ phase difference. An optical 90-degree hybrid circuit according to the present invention comprises a first demultiplexing optical coupler including a first and second input port, a second demultiplexing optical coupler including a third and fourth input port, first and second arm waveguides connected to the first and second input port, each having the same length, a third and fourth arm waveguides connected to the third and fourth input port, each having the same length, a 90-degree phase shift section installed in one of the first to fourth arm waveguides, a first optical coupler connected to the first and third arm waveguide, and a second optical coupler connected to the second and fourth arm waveguide, the light is inputted into the first and fourth input port or into the second and third input port.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: February 11, 2014
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yohei Sakamaki, Yusuke Nasu, Toshikazu Hashimoto, Kuninori Hattori, Hiroshi Takahashi
  • Patent number: 8588560
    Abstract: An optical 90-degree hybrid circuit includes a first demultiplexing optical coupler having two or more first input ports and two or more first output ports, a second demultiplexing optical coupler having two or more second input ports and two or more second output ports, two first arm waveguides connected to the first output ports, two second arm waveguides connected to the second output ports, a 90-degree phase shift section installed in one of the four arm waveguides, a first optical coupler and a second optical coupler connected to the first arm waveguides and the second arm waveguides, a first optical waveguide for connecting an optical splitter and the first input ports, and a second optical waveguide for connecting the optical splitter and the second input ports, wherein an optical length of the first optical waveguide is different from that of the second optical waveguide.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 19, 2013
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yohei Sakamaki, Takashi Goh, Toshikazu Hashimoto, Yusuke Nasu, Kuninori Hattori, Hiroshi Takahashi
  • Publication number: 20120141067
    Abstract: The present invention provides an optical 90-degree hybrid circuit for reducing wavelength dependency of an IQ phase difference. An optical 90-degree hybrid circuit according to the present invention comprises a first demultiplexing optical coupler including a first and second input port, a second demultiplexing optical coupler including a third and fourth input port, first and second arm waveguides connected to the first and second input port, each having the same length, a third and fourth arm waveguides connected to the third and fourth input port, each having the same length, a 90-degree phase shift section installed in one of the first to fourth arm waveguides, a first optical coupler connected to the first and third arm waveguide, and a second optical coupler connected to the second and fourth arm waveguide, the light is inputted into the first and fourth input port or into the second and third input port.
    Type: Application
    Filed: July 22, 2010
    Publication date: June 7, 2012
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yohei Sakamaki, Yusuke Nasu, Toshikazu Hashimoto, Kuninori Hattori, Hiroshi Takahashi
  • Publication number: 20120093457
    Abstract: An optical 90-degree hybrid circuit includes a first demultiplexing optical coupler having two or more first input ports and two or more first output ports, a second demultiplexing optical coupler having two or more second input ports and two or more second output ports, two first arm waveguides connected to the first output ports, two second arm waveguides connected to the second output ports, a 90-degree phase shift section installed in one of the four arm waveguides, a first optical coupler and a second optical coupler connected to the first arm waveguides and the second arm waveguides, a first optical waveguide for connecting an optical splitter and the first input ports, and a second optical waveguide for connecting the optical splitter and the second input ports, wherein an optical length of the first optical waveguide is different from that of the second optical waveguide.
    Type: Application
    Filed: July 9, 2010
    Publication date: April 19, 2012
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yohei Sakamaki, Takashi Goh, Toshikazu Hashimoto, Yusuke Nasu, Kuninori Hattori, Hiroshi Takahashi
  • Publication number: 20120082414
    Abstract: An optical 90-degree hybrid circuit includes: first and second optical splitters for receiving and splitting a first and second light beam into two, respectively; a first optical coupler for generating an interfering light beam by multiplexing one of the light beams split by the first optical splitter and the second optical splitter; and a second optical coupler for generating an interfering light beam by multiplexing another one of the light beams split by the first optical splitter and the second optical splitter. The first optical splitter includes an optical coupler configured to output two light beams having equal phases, and the second optical splitter includes an optical coupler configured to output two light beams having a phase difference of 90 degrees.
    Type: Application
    Filed: June 30, 2010
    Publication date: April 5, 2012
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yohei Sakamaki, Toshikazu Hashimoto, Yusuke Nasu, Kuninori Hattori, Hiroshi Takahashi
  • Patent number: 8150219
    Abstract: In an optical interferometer, polarization dependence attributable to the optical path difference has conventionally been eliminated by inserting a half-wave plate at the center of the interferometer. However, light induced by polarization coupling produced in directional couplers used in the optical interferometer causes interference having different interference conditions from those of the normal light. Polarization rotators that effect any one of 90° rotation and ?90° rotation of all states of polarization of incoming light are inserted in the optical interferometer, and thereby the interference conditions of light induced by polarization coupling are made the same as those of the normal light. Each of the polarization rotators is implemented by using two half-wave plates and by varying an angle of combination of these half-wave plates. Alternatively, each of the polarization rotators is implemented through a combination of one half-wave plate and a waveguide having birefringence properties.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 3, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yusuke Nasu, Manabu Oguma, Yasuaki Hashizume, Yasuyuki Inoue, Hiroshi Takahashi, Kuninori Hattori, Toshikazu Hashimoto, Yohei Sakamaki
  • Patent number: 7899279
    Abstract: A demodulator is provided for a multilevel differential phase shift keyed signal, capable of eliminating polarization dependence due to birefringence and polarization coupling-induced light resulting from a waveguide structure, and also, polarization dependence due to dynamic birefringence produced at the time of driving a variable phase adjuster. The demodulator is configured of an optical delay line interferometer of a waveguide interference type. The S/N ratio of a demodulated signal in the demodulator formed by the optical delay line interferometer can be also improved. Further, both the polarization dependence and the temperature dependence of the optical delay line interferometer can be reduced. The disposition of a polarization converter and groves filled with a temperature compensation material makes it possible to provide a circuit configuration suitable for eliminating the polarization dependence and the temperature dependence of the optical delay line interferometer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: March 1, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yusuke Nasu, Kuninori Hattori, Toshikazu Hashimoto, Yohei Sakamaki, Hiroshi Takahashi, Yasuyuki Inoue
  • Publication number: 20100119189
    Abstract: A demodulator is provided for a multilevel differential phase shift keyed signal, capable of eliminating polarization dependence due to birefringence and polarization coupling-induced light resulting from a waveguide structure, and also, polarization dependence due to dynamic birefringence produced at the time of driving a variable phase adjuster. The demodulator is configured of an optical delay line interferometer of a waveguide interference type. The S/N ratio of a demodulated signal in the demodulator formed by the optical delay line interferometer can be also improved. Further, both the polarization dependence and the temperature dependence of the optical delay line interferometer can be reduced. The disposition of a polarization converter and groves filled with a temperature compensation material makes it possible to provide a circuit configuration suitable for eliminating the polarization dependence and the temperature dependence of the optical delay line interferometer.
    Type: Application
    Filed: January 9, 2009
    Publication date: May 13, 2010
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yusuke Nasu, Kuninori Hattori, Toshikazu Hashimoto, Yohei Sakamaki, Hiroshi Takahashi, Yasuyuki Inoue
  • Publication number: 20100104237
    Abstract: In an optical interferometer, polarization dependence attributable to the optical path difference has conventionally been eliminated by inserting a half-wave plate at the center of the interferometer. However, light induced by polarization coupling produced in directional couplers used in the optical interferometer causes interference having different interference conditions from those of the normal light. Polarization rotators that effect any one of 90° rotation and ?90° rotation of all states of polarization of incoming light are inserted in the optical interferometer, and thereby the interference conditions of light induced by polarization coupling are made the same as those of the normal light. Each of the polarization rotators is implemented by using two half-wave plates and by varying an angle of combination of these half-wave plates. Alternatively, each of the polarization rotators is implemented through a combination of one half-wave plate and a waveguide having birefringence properties.
    Type: Application
    Filed: December 27, 2007
    Publication date: April 29, 2010
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yusuke Nasu, Manabu Oguma, Yasuaki Hashizume, Yasuyuki Inoue, Hiroshi Takahashi, Kuninori Hattori, Toshikazu Hashimoto, Yohei Sakamaki
  • Patent number: 6304687
    Abstract: In a light waveguide circuit including a plurality of waveguides having different length, a material (10) having a temperature coefficient of a refractive index including a symbol different from that of a temperature coefficient of an effective refractive index of the waveguide (4) is charged into a groove (12) formed by removing the upper clad and the core from the waveguide (4), or a groove (12) formed by removing the upper clad, the core and the lower clad from the waveguide (4). A difference in length of the removed portions between adjacent waveguides is proportional to a difference in length of the waveguides which were not removed and remained.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: October 16, 2001
    Assignees: Nippon Telegraph and Telephone Corporation, NTT Electronics Corporation
    Inventors: Yasuyuki Inoue, Akimasa Kaneko, Hiroshi Takahashi, Fumiaki Hanawa, Kuninori Hattori, Kenji Yokoyama, Senichi Suzuki, Shin Sumida, Katsunari Okamoto, Motohaya Ishii, Hiroaki Yamada, Takashi Yoshida, Koichi Arishima, Fumihiro Ebisawa, Motohiro Nakahara