Patents by Inventor Kuo-Wei Huang

Kuo-Wei Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230104591
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. A plurality of nanoparticles comprising nickel are immobilized on the framework.
    Type: Application
    Filed: August 26, 2021
    Publication date: April 6, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou-Sedjerari, Sathiyamoorthy Murugesan, Moussab Harb, Manoj Kumar Gangwar
  • Publication number: 20230099413
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The functionalized fibrous hierarchical zeolite is functionalized with at least one terminal hydroxyl. Terminal organometallic functionalities are bonded to silicon atoms of the microporous framework, the terminal organometallic functionalities comprising a nickel atom.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 30, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou-Sedjerari, Sathiyamoorthy Murugesan, Moussab Harb, Manoj Kumar Gangwar
  • Publication number: 20230102199
    Abstract: Provided is a method for preparing lead iodide, which controls the crystal form of lead iodide through temperature, including: dissolving a lead compound in a first acid solution and adding an iodine compound to form a reaction solution including the first lead iodide; and heating the reaction solution to a temperature of 60° C. or more and standing at a constant temperature, to obtain the second lead iodide, wherein a peak intensity of the (003) crystal plane of the second lead iodide is greater than or equal to a peak intensity of the (110) crystal plane. Provided is also a method for preparing the perovskite film.
    Type: Application
    Filed: January 12, 2022
    Publication date: March 30, 2023
    Inventors: Pei-Ting Chiu, Yung-Liang Tung, Shih-Hsiung Wu, Kuo-Wei Huang, Jung-Pin Chiou, Jen-An Chen, Qiao-Zhi Guan
  • Publication number: 20230090352
    Abstract: A light emitting diode device includes a substrate, a frame, an LED die and a transparent layer. The frame is located on the substrate. The frame and the substrate collectively define a concave portion. The frame has a light reflectivity ranging from 20% to 40%. The LED die is located on the substrate and within the concave portion. The transparent layer is filled into the concave portion and covering the LED die, wherein the LED die has a side-emitting surface and a top-emitting surface, the side-emitting surface has a luminous intensity greater than that of the top-emitting surface.
    Type: Application
    Filed: November 24, 2022
    Publication date: March 23, 2023
    Inventors: Shu-Wei CHEN, Ching-Huai NI, Kuo-Wei HUANG, Jia-Jhang KUO
  • Publication number: 20230078677
    Abstract: A fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The framework comprises no Brønsted acid activity.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 16, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj Kumar Gangwar, Rajesh Kumar Parsapur
  • Publication number: 20230079784
    Abstract: Provided is a method for testing a perovskite precursor solution, including: taking a perovskite precursor solution containing a plurality of dispersed perovskite colloids as a sample to perform liquid analysis, thereby obtaining an analysis information; and determining whether the perovskite precursor solution is a good product based on obtained analysis information from the liquid analysis, wherein the analysis information is at least one selected from the group consisting of element content of the colloid, element distribution, colloid size, and colloid appearance, thereby a feasible and effective testing method is defined through the correlation between the perovskite precursor colloid and the perovskite.
    Type: Application
    Filed: November 17, 2021
    Publication date: March 16, 2023
    Inventors: Kuo-Wei Huang, Pei-Ting Chiu, Yung-Liang Tung, Po-Tsung Hsieh, Tai-Fu Lin
  • Publication number: 20230082855
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The functionalized fibrous hierarchical zeolite is functionalized with at least one amine. A plurality of nanoparticles comprising platinum are immobilized on the framework.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 16, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj Kumar Gangwar
  • Publication number: 20230085197
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The functionalized fibrous hierarchical zeolite is functionalized with at least one terminal amine bonded to a silicon atom. Terminal organometallic functionalities are bonded to a nitrogen atom of the at least one terminal amine, the terminal organometallic functionalities comprising a platinum atom.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 16, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj Kumar Gangwar
  • Publication number: 20230072575
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. The functionalized fibrous hierarchical zeolite is functionalized with at least one amine. A plurality of nanoparticles comprising nickel are immobilized on the framework.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 9, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou-Sedjerari, Sathiyamoorthy Murugesan, Moussab Harb, Manoj Kumar Gangwar
  • Patent number: 11596931
    Abstract: Modified crystalline zeolite materials have a zeolite framework with both tetra-coordinate Lewis aluminum single sites and Brønsted aluminum sites. The tetra-coordinate Lewis aluminum single sites include aluminum atoms covalently bonded to a variable group and to two oxygen atoms and further coordinated to a third oxygen atom. The variable group may be alkyl, hydride, or hydroxyl. Methods for incorporating tetra-coordinate Lewis aluminum single sites into a crystalline zeolite material include contacting the crystalline zeolite material with a dialkylaluminum hydride R2AlH, where each R is alkyl, to react the dialkylaluminum hydride with the zeolite framework and form tetra-coordinate alkyl aluminum single sites. Heating the alkyl-aluminum zeolite induces ?-hydride elimination of the alkyl groups, whereby tetra-coordinate aluminum hydride single sites are formed.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: March 7, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Basset, Kuo-Wei Huang, Anissa Bendjeriou-Sedjerari, Sathiyamoorthy Murugesan, Rajesh Parsapur
  • Publication number: 20230069248
    Abstract: A functionalized fibrous hierarchical zeolite includes a framework comprising aluminum atoms, silicon atoms, and oxygen atoms, the framework further comprising a plurality of micropores and a plurality of mesopores. A plurality of nanoparticles comprising platinum are immobilized on the framework.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj Kumar Gangwar
  • Patent number: 11591229
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework comprising a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a titanium atom. The titanium atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the titanium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: February 28, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Patent number: 11591230
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework includes at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties include a hafnium atom. The hafnium atom is bonded to a bridging oxygen atom, and bridging oxygen atom bridges the hafnium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: February 28, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Patent number: 11565942
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a platinum atom. The platinum atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the platinum atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: January 31, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Patent number: 11555737
    Abstract: Herein disclosed is an optoelectronic measuring device. The optoelectronic measuring device comprises an objective lens, an imaging lens, a camera, and an optical path adjusting module which are disposed at the first light path. The objective lens receives a first testing light, and transforms the first testing light into a second testing light. The imaging lens receives the second testing light, and transforms the second testing light into a third testing light. The camera measures a beam characteristic of the third testing light. The optical path adjusting module, disposed between the imaging lens and the camera, comprises a mirror, the mirror moves relatively to the imaging lens according to a test command, and adjusts the distance between the imaging lens and the camera at the first light path to be a first optical distance or a second optical distance. Wherein the mirror reflects the third testing light vertically.
    Type: Grant
    Filed: May 24, 2020
    Date of Patent: January 17, 2023
    Assignee: CHROMA ATE INC.
    Inventors: Yu-Yen Wang, Kuo-Wei Huang, Szu-Yuan Weng
  • Patent number: 11538970
    Abstract: A light emitting diode device includes a substrate, a frame, an LED die and a transparent layer. The frame is located on the substrate. The frame and the substrate collectively define a concave portion. The frame has a light reflectivity ranging from 20% to 40%. The LED die is located on the substrate and within the concave portion. The transparent layer is filled into the concave portion and covering the LED die, wherein the LED die has a side-emitting surface and a top-emitting surface, the side-emitting surface has a luminous intensity greater than that of the top-emitting surface.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: December 27, 2022
    Assignee: Lextar Electronics Corporation
    Inventors: Shu-Wei Chen, Ching-Huai Ni, Kuo-Wei Huang, Jia-Jhang Kuo
  • Patent number: 11498059
    Abstract: According to one or more embodiments presently disclosed, a catalyst for converting hydrocarbons may include catalytic oxidized metal materials comprising oxidized iron, oxidized cobalt, and oxidized copper. At least 95 wt. % of the catalytic oxidized metal materials may be a combination of oxidized iron, oxidized cobalt, and oxidized copper. The catalyst may additionally include a mesoporous support material comprising pores having an average pore diameter of from 2 nm to 50 nm. At least 95 wt. % of the mesoporous support material may comprise alumina. At least 95 wt. % of the catalyst may be the combination of the catalytic oxidized metal materials and the mesoporous support material. Additional embodiments are included, such as methods for making the presently disclosed catalysts.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 15, 2022
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Nouf Mohammed Al-Jabri, Kuo-Wei Huang
  • Publication number: 20220348474
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to a nitrogen atom of a secondary amine functional group including a nitrogen atom and a hydrogen atom. The organometallic moieties may include a zirconium atom that is bonded to the nitrogen atom of the secondary amine functional group. The nitrogen atom of the secondary amine function group may bridge the zirconium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: November 3, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Sathiyamoorthy Murugesan, Manoj K. Gangwar
  • Publication number: 20220340432
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a modified zeolite may include a microporous framework including a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a platinum atom. The platinum atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the platinum atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 27, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan
  • Publication number: 20220340431
    Abstract: Disclosed herein are modified zeolites and methods for making modified zeolites. In one or more embodiments disclosed herein, a zeolite may include a microporous framework comprising a plurality of micropores having diameters of less than or equal to 2 nm. The microporous framework may include at least silicon atoms and oxygen atoms. The modified zeolite may further include organometallic moieties each bonded to bridging oxygen atoms. The organometallic moieties may include a zirconium atom. The zirconium atom may be bonded to a bridging oxygen atom, and the bridging oxygen atom may bridge the zirconium atom of the organometallic moiety and a silicon atom of the microporous framework.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 27, 2022
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Robert Peter Hodgkins, Omer Refa Koseoglu, Jean-Marie Maurice Basset, Kuo-Wei Huang, Anissa Bendjeriou Sedjerari, Manoj K. Gangwar, Sathiyamoorthy Murugesan