Patents by Inventor Kurt Lindsay Haller

Kurt Lindsay Haller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9052190
    Abstract: A method of providing high accuracy inspection or metrology in a bright-field differential interference contrast (BF-DIC) system is described. This method can include creating first and second beams from a first light beam. The first and second beams have round cross-sections, and form first partially overlapping scanning spots radially displaced on a substrate. Third and fourth beams are created from the first light beam or a second light beam. The third and fourth beams have elliptical cross-sections, and form second partially overlapping scanning spots tangentially displaced on the substrate. At least one portion of the substrate can be scanned using the first and second partially overlapping scanning spots as the substrate is rotated. Radial and tangential slopes can be determined using measurements obtained from the scanning using the first and second partially overlapping scanning spots. These slopes can be used to determine wafer shape or any localized topography feature.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 9, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Ali Salehpour, Jaydeep Sinha, Kurt Lindsay Haller, Pradeep Vukkadala, George Kren, Jiayao Zhang, Mehdi Vaez-Iravani
  • Publication number: 20140268172
    Abstract: A method of providing high accuracy inspection or metrology in a bright-field differential interference contrast (BF-DIC) system is described. This method can include creating first and second beams from a first light beam. The first and second beams have round cross-sections, and form first partially overlapping scanning spots radially displaced on a substrate. Third and fourth beams are created from the first light beam or a second light beam. The third and fourth beams have elliptical cross-sections, and form second partially overlapping scanning spots tangentially displaced on the substrate. At least one portion of the substrate can be scanned using the first and second partially overlapping scanning spots as the substrate is rotated. Radial and tangential slopes can be determined using measurements obtained from the scanning using the first and second partially overlapping scanning spots. These slopes can be used to determine wafer shape or any localized topography feature.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventors: Ali Salehpour, Jaydeep Sinha, Kurt Lindsay Haller, Pradeep Vukkadala, George Kren, Jiayao Zhang, Mehdi Vaez-Iravani
  • Patent number: 7728965
    Abstract: Systems and methods for inspecting an edge of a specimen are provided. One system includes an illumination subsystem configured to direct light to the edge of the specimen at an oblique angle of incidence. The plane of incidence of the light is substantially perpendicular to a plane substantially tangent to the edge of the specimen. The system also includes a detection subsystem configured to collect light scattered from the edge and to generate signals responsive to the scattered light. One method includes directing light to the edge of the specimen at an oblique angle of incidence. The plane of incidence is substantially perpendicular to a plane substantially tangent to the edge of the specimen. The method also includes collecting light scattered from the edge and generating signals responsive to the scattered light. The signals described above can be used to detect defects on the edge of the specimen.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: June 1, 2010
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lindsay Haller, Steve Yifeng Cui, Jared Lera