Patents by Inventor Kwang-hee Shin

Kwang-hee Shin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240092141
    Abstract: An air conditioning device for a vehicle includes: a housing having an inside divided into an inflow space, a heat exchange space, and an outflow space, which are straightly arranged, and having a plurality of discharge ports, which communicates with an interior, at the inflow space; a blowing unit disposed at the inflow space of the housing and configured to blow air; a heat exchange unit disposed at the heat exchange space of the housing and configured to adjust a temperature of conditioned air by exchanging heat with air; and an opening-closing door disposed at the outflow space of the housing and configured to open and close the plurality of discharge ports such that conditioned air at an adjusted temperature selectively flows to the plurality of discharge ports. The air conditioning device adjusts the temperature of conditioned air for respective modes and reduces a flow resistance of air.
    Type: Application
    Filed: March 8, 2023
    Publication date: March 21, 2024
    Applicants: HYUNDAI MOTOR COMPANY, KIA CORPORATION, DOOWON CLIMATE CONTROL CO., LTD.
    Inventors: Kwang Ok Han, Young Tae Song, Yong Chul Kim, Gee Young Shin, Su Yeon Kang, Jae Sik Choi, Dae Hee Lee, Byeong Moo Jang, Ung Hwi Kim, Jae Won Cha, Won Jun Joung, Byung Guk An
  • Patent number: 11484843
    Abstract: A method of predicting membrane fouling in a reverse osmosis process includes collecting information relative to the reverse osmosis process being performed over a predetermined period of time, the collected information including a process factor and a water quality factor, the process factor including a produced water flow rate; calculating a salt removal rate and a pressure drop based on the collected information; normalizing the produced water flow rate, the salt removal rate, and the pressure drop; generating a prediction equation using normalized values of the produced water flow rate, the salt removal rate, and the pressure drop values; and predicting membrane fouling through the generated prediction equation to determine a chemical cleaning time. Process and water quality factors are normalized to temperature and/or flow rate, and the prediction equation uses the normalized factors. Both short-term and long-term predictions are made for chemical cleaning time and membrane module replacement time.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: November 1, 2022
    Inventors: Young Geun Lee, Kwang Hee Shin, Sang Ho Lee, Yong Jun Choi
  • Publication number: 20200254391
    Abstract: A method of predicting membrane fouling in a reverse osmosis process includes collecting information relative to the reverse osmosis process being performed over a predetermined period of time, the collected information including a process factor and a water quality factor, the process factor including a produced water flow rate; calculating a salt removal rate and a pressure drop based on the collected information; normalizing the produced water flow rate, the salt removal rate, and the pressure drop; generating a prediction equation using normalized values of the produced water flow rate, the salt removal rate, and the pressure drop values; and predicting membrane fouling through the generated prediction equation to determine a chemical cleaning time. Process and water quality factors are normalized to temperature and/or flow rate, and the prediction equation uses the normalized factors. Both short-term and long-term predictions are made for chemical cleaning time and membrane module replacement time.
    Type: Application
    Filed: December 12, 2019
    Publication date: August 13, 2020
    Inventors: Young Geun LEE, Kwang Hee SHIN, Sang Ho LEE, Yong Jun CHOI
  • Patent number: 10526669
    Abstract: The present invention relates to a method and system for recovering carbonate from steel slag, in which it is possible to extract carbonate from steel slag and reuse the extracted carbonate, and to recycle steel slag and make use of CO2 gas without emission to the atmosphere. Since unreacted metal ions and an acidic solvent are reused in the method and system, it is possible to increase carbonate extraction efficiency and reduce an amount of waste.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: January 7, 2020
    Assignee: Doosan Heavy Industries Construction Co., Ltd
    Inventors: Jang Yong You, Ja Hyung Koo, Kwang Hee Shin, You Seok Kim
  • Publication number: 20180171421
    Abstract: The present invention relates to a method and system for recovering carbonate from steel slag, in which it is possible to extract carbonate from steel slag and reuse the extracted carbonate, and to recycle steel slag and make use of CO2 gas without emission to the atmosphere. Since unreacted metal ions and an acidic solvent are reused in the method and system, it is possible to increase carbonate extraction efficiency and reduce an amount of waste.
    Type: Application
    Filed: July 25, 2017
    Publication date: June 21, 2018
    Inventors: Jang Yong You, Ja Hyung Koo, Kwang Hee Shin, You Seok Kim
  • Publication number: 20090110519
    Abstract: A loading/unloading method of a semiconductor manufacturing apparatus for randomly designating a slot of a wafer in loading/unloading the wafer is provided. The method of loading and unloading a wafer through a random designation of wafer slot instead of sequential designation in a semiconductor manufacturing apparatus includes pre-setting a wafer slot selection mode; loading wafers into a piece of process equipment in the pre-set slot selection sequence when the wafer slot selection mode is set as a random mode; performing a process on the wafers; and unloading the wafers having been processed in a pre-set slot selection sequence, thereby preventing defects in the wafer.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 30, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jong-Bum Park, Kwang-Hee Shin
  • Patent number: 6149379
    Abstract: A wafer transfer method of semiconductor fabricating equipment is capable of successively arranging a plurality of wafers in a designated order (e.g., an ascending order, a descending order, an odd/even number order or an individual selection order). The wafer transfer method uses a first cassette containing the wafers, and a second cassette for receiving the wafers. A wafer transfer robot having a wafer transfer arm moves the wafers from the first cassette to the second cassette, after the wafer serial numbers have been read and sent to a computer. The computer uses a selected wafer arrangement order to decide where within the second cassette each wafer from the first cassette should be placed and then controls the wafer transfer robot to place each wafer into the desired location. With the wafers arranged in the selected order, it is not necessary to test each wafer after each fabricating process.
    Type: Grant
    Filed: October 21, 1999
    Date of Patent: November 21, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-hee Shin, Seung-kun Lee
  • Patent number: 6146077
    Abstract: A wafer transfer system of semiconductor fabricating equipment is capable of successively arranging a plurality of wafers in a designated order (e.g., an ascending order, a descending order, an odd/even number order or an individual selection order). The wafer transfer system includes a first cassette containing the wafers, and a second cassette for receiving the wafers. A wafer transfer robot having a wafer transfer arm moves the wafers from the first cassette to the second cassette, after the wafer serial numbers have been read and sent to a computer. The computer uses a selected wafer arrangement order to decide where within the second cassette each wafer from the first cassette should be placed and then controls the wafer transfer robot to place each wafer into the desired location. With the wafers arranged in the selected order, it is not necessary to test each wafer after each fabricating process.
    Type: Grant
    Filed: January 13, 1998
    Date of Patent: November 14, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-hee Shin, Seung-kun Lee