Patents by Inventor Kwang-Ming Lin

Kwang-Ming Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11989966
    Abstract: A method for forming semiconductor devices includes providing a substrate with a conductive pad formed thereon; forming a transparent structure over the substrate, wherein the transparent structure includes a plurality of collimating pillars adjacent to the conductive pad; forming a light-shielding structure over the plurality of collimating pillars and the conductive pad; performing a cutting process to remove one or more materials directly above the conductive pad, while leaving remaining material to cover the conductive pad, wherein the material includes a portion of the light-shielding structure; and performing an etching process to remove the remaining material to expose the conductive pad.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: May 21, 2024
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Hsin-Hui Lee, Han-Liang Tseng, Jiunn-Liang Yu, Kwang-Ming Lin, Yin Chen, Si-Twan Chen, Hsueh-Jung Lin, Wen-Chih Lu, Chih-Hsien Chen
  • Patent number: 11955397
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate, a channel layer, a barrier layer, a compound semiconductor layer, a gate electrode, and a stack of dielectric layers. The channel layer is disposed on the substrate. The barrier layer is disposed on the channel layer. The compound semiconductor layer is disposed on the barrier layer. The gate electrode is disposed on the compound semiconductor layer. The stack of dielectric layers is disposed on the gate electrode. The stack of dielectric layers includes layers having different etching rates.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: April 9, 2024
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shin-Cheng Lin, Cheng-Wei Chou, Ting-En Hsieh, Yi-Han Huang, Kwang-Ming Lin, Yung-Fong Lin, Cheng-Tao Chou, Chi-Fu Lee, Chia-Lin Chen, Shu-Wen Chang
  • Patent number: 11569121
    Abstract: Methods of forming semiconductor devices are provided. The methods include: forming a trench in a substrate, wherein the trench includes a defect protruding from a bottom surface of the trench; forming a flowable material on the substrate to at least partially cover the defect; performing an etching process to reduce the height of the defect; and removing the flowable material.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: January 31, 2023
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: I-Ping Lee, Kwang-Ming Lin, Chih-Cherng Liao, Ya-Huei Kuo, Pei-Yu Chang, Ya-Ting Chang, Tsung-Hsiung Lee, Zheng-Xian Wu, Kai-Chuan Kan, Yu-Jui Chang, Yow-Shiuan Liu
  • Publication number: 20220384251
    Abstract: Methods of forming semiconductor devices are provided. The methods include: forming a trench in a substrate, wherein the trench includes a defect protruding from a bottom surface of the trench; forming a flowable material on the substrate to at least partially cover the defect; performing an etching process to reduce the height of the defect; and removing the flowable material.
    Type: Application
    Filed: May 26, 2021
    Publication date: December 1, 2022
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: I-Ping LEE, Kwang-Ming LIN, Chih-Cherng LIAO, Ya-Huei KUO, Pei-Yu CHANG, Ya-Ting CHANG, Tsung-Hsiung LEE, Zheng-Xian WU, Kai-Chuan KAN, Yu-Jui CHANG, Yow-Shiuan LIU
  • Publication number: 20220148938
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate, a channel layer, a barrier layer, a compound semiconductor layer, a gate electrode, and a stack of dielectric layers. The channel layer is disposed on the substrate. The barrier layer is disposed on the channel layer. The compound semiconductor layer is disposed on the barrier layer. The gate electrode is disposed on the compound semiconductor layer. The stack of dielectric layers is disposed on the gate electrode. The stack of dielectric layers includes layers having different etching rates.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 12, 2022
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Shin-Cheng LIN, Cheng-Wei CHOU, Ting-En HSIEH, Yi-Han HUANG, Kwang-Ming LIN, Yung-Fong LIN, Cheng-Tao CHOU, Chi-Fu LEE, Chia-Lin CHEN, Shu-Wen CHANG
  • Patent number: 11315964
    Abstract: An optical sensor includes pixels disposed in a substrate. A light collimating layer is disposed on the substrate and includes a transparent layer, a light-shielding layer, and transparent pillars. The transparent layer blanketly disposed on the substrate covers the pixels and the region between the pixels. The light-shielding layer is disposed on the transparent layer and between the transparent pillars. The transparent pillars penetrating through the light-shielding layer are correspondingly disposed on the pixels.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: April 26, 2022
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Hsin-Hui Lee, Han-Liang Tseng, Jiunn-Liang Yu, Kwang-Ming Lin, Yin Chen, Si-Twan Chen, Hsueh-Jung Lin, Wen-Chih Lu, Ting-Jung Lu
  • Publication number: 20220029035
    Abstract: A method for forming semiconductor devices includes providing a substrate with a conductive pad formed thereon; forming a transparent structure over the substrate, wherein the transparent structure includes a plurality of collimating pillars adjacent to the conductive pad; forming a light-shielding structure over the plurality of collimating pillars and the conductive pad; performing a cutting process to remove one or more materials directly above the conductive pad, while leaving remaining material to cover the conductive pad, wherein the material includes a portion of the light-shielding structure; and performing an etching process to remove the remaining material to expose the conductive pad.
    Type: Application
    Filed: October 8, 2021
    Publication date: January 27, 2022
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Hui LEE, Han-Liang TSENG, Jiunn-Liang YU, Kwang-Ming LIN, Yin CHEN, Si-Twan CHEN, Hsueh-Jung LIN, Wen-Chih LU, Chih-Hsien CHEN
  • Patent number: 11177397
    Abstract: A method for forming semiconductor devices includes providing a substrate with a conductive pad formed thereon; forming a transparent structure over the substrate, wherein the transparent structure includes a plurality of collimating pillars adjacent to the conductive pad; forming a light-shielding structure over the plurality of collimating pillars and the conductive pad; performing a cutting process to remove one or more materials directly above the conductive pad, while leaving remaining material to cover the conductive pad, wherein the material includes a portion of the light-shielding structure; and performing an etching process to remove the remaining material to expose the conductive pad.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: November 16, 2021
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Hui Lee, Han-Liang Tseng, Jiunn-Liang Yu, Kwang-Ming Lin, Yin Chen, Si-Twan Chen, Hsueh-Jung Lin, Wen-Chih Lu, Chih-Hsien Chen
  • Publication number: 20210217906
    Abstract: A method for forming semiconductor devices includes providing a substrate with a conductive pad formed thereon; forming a transparent structure over the substrate, wherein the transparent structure includes a plurality of collimating pillars adjacent to the conductive pad; forming a light-shielding structure over the plurality of collimating pillars and the conductive pad; performing a cutting process to remove one or more materials directly above the conductive pad, while leaving remaining material to cover the conductive pad, wherein the material includes a portion of the light-shielding structure; and performing an etching process to remove the remaining material to expose the conductive pad.
    Type: Application
    Filed: January 9, 2020
    Publication date: July 15, 2021
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Hui LEE, Han-Liang TSENG, Jiunn-Liang YU, Kwang-Ming LIN, Yin CHEN, Si-Twan CHEN, Hsueh-Jung LIN, Wen-Chih LU, Chih-Hsien CHEN
  • Patent number: 10971355
    Abstract: A substrate includes a ceramic core, a first adhesion layer, a barrier layer, and a second adhesion layer. The first adhesion layer encapsulates the ceramic core and includes silicon oxynitride, wherein the atomic number ratio of oxygen to nitrogen in silicon oxynitride of the first adhesion layer has a first ratio. The barrier layer encapsulates the first adhesion layer and includes silicon oxynitride, wherein the atomic number ratio of oxygen to nitrogen in silicon oxynitride of the barrier layer has a second ratio that is different from the first ratio. The second adhesion layer encapsulates the barrier layer and includes silicon oxynitride, wherein the atomic number ratio of oxygen to nitrogen in silicon oxynitride of the second adhesion layer has a third ratio that is different from the second ratio.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: April 6, 2021
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Kwang-Ming Lin, Yung-Fong Lin
  • Patent number: 10935805
    Abstract: An optical sensor includes a plurality of pixels disposed in a substrate and a light collimating layer. The light collimating layer is disposed on the substrate. The light collimating layer includes a light-shielding layer, a plurality of transparent pillars, and a plurality of first dummy transparent pillars. The light-shielding layer is disposed on the substrate. The plurality of transparent pillars pass through the light-shielding layer and are disposed correspondingly on the plurality of pixels. The plurality of first dummy transparent pillars that pass through the light-shielding layer are disposed on a first peripheral region of the light collimating layer, wherein the plurality of first dummy transparent pillars surround the plurality of transparent pillars from a top view.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: March 2, 2021
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Hsin-Hui Lee, Han-Liang Tseng, Jiunn-Liang Yu, Kwang-Ming Lin, Yin Chen, Si-Twan Chen, Hsueh-Jung Lin, Wen-Chih Lu, Ting-Jung Lu
  • Publication number: 20200350410
    Abstract: A substrate includes a ceramic core, a first adhesion layer, a barrier layer, and a second adhesion layer. The first adhesion layer encapsulates the ceramic core and includes silicon oxynitride, wherein the atomic number ratio of oxygen to nitrogen in silicon oxynitride of the first adhesion layer has a first ratio. The barrier layer encapsulates the first adhesion layer and includes silicon oxynitride, wherein the atomic number ratio of oxygen to nitrogen in silicon oxynitride of the barrier layer has a second ratio that is different from the first ratio. The second adhesion layer encapsulates the barrier layer and includes silicon oxynitride, wherein the atomic number ratio of oxygen to nitrogen in silicon oxynitride of the second adhesion layer has a third ratio that is different from the second ratio.
    Type: Application
    Filed: November 21, 2019
    Publication date: November 5, 2020
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Kwang-Ming LIN, Yung-Fong LIN
  • Patent number: 10770602
    Abstract: An optical sensor includes pixels disposed in a substrate and a light collimating layer disposed on the substrate. The light collimating layer includes a first light-shielding layer, first transparent pillars, a second light-shielding layer, and second transparent pillars. The first light-shielding layer is disposed on the substrate. The first transparent pillars through the first light-shielding layer are correspondingly disposed on the pixels. The second light-shielding layer is disposed on the first light-shielding layer and the first transparent pillars. The second transparent pillars through the second light-shielding layer are correspondingly disposed on the first transparent pillars. The top surface area of each of the first transparent pillars is not equal to the bottom surface area of each of the second transparent pillars.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: September 8, 2020
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Hsin-Hui Lee, Han-Liang Tseng, Jiunn-Liang Yu, Kwang-Ming Lin, Yin Chen, Si-Twan Chen, Hsueh-Jung Lin, Wen-Chih Lu, Ting-Jung Lu
  • Patent number: 10763288
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate. The substrate includes a plurality of pixels. The semiconductor device also includes a light collimator layer disposed on the substrate. The light collimator layer includes a transparent connection feature disposed on the substrate, and a plurality of transparent pillars disposed on the transparent connection feature. The plurality of transparent pillars cover the plurality of pixels, and the transparent connection feature connects to the plurality of transparent pillars. The plurality of transparent pillars and the transparent connection feature are made of a first material which includes a transparent material. The light collimator layer also includes a plurality of first light-shielding features disposed on the transparent connection feature. The top surface of one of the transparent pillars is level with the top surface of one of the first light-shielding features.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: September 1, 2020
    Assignee: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Hsin-Hui Lee, Han-Liang Tseng, Jiunn-Liang Yu, Kwang-Ming Lin, Yin Chen, Si-Twan Chen, Hsueh-Jung Lin, Wen-Chih Lu, Ting-Jung Lu
  • Publication number: 20200266226
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate. The substrate includes a plurality of pixels. The semiconductor device also includes a light collimator layer disposed on the substrate. The light collimator layer includes a transparent connection feature disposed on the substrate, and a plurality of transparent pillars disposed on the transparent connection feature. The plurality of transparent pillars cover the plurality of pixels, and the transparent connection feature connects to the plurality of transparent pillars. The plurality of transparent pillars and the transparent connection feature are made of a first material which includes a transparent material. The light collimator layer also includes a plurality of first light-shielding features disposed on the transparent connection feature. The top surface of one of the transparent pillars is level with the top surface of one of the first light-shielding features.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 20, 2020
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Hui LEE, Han-Liang TSENG, Jiunn-Liang YU, Kwang-Ming LIN, Yin CHEN, Si-Twan CHEN, Hsueh-Jung LIN, Wen-Chih LU, Ting-Jung LU
  • Publication number: 20200266305
    Abstract: An optical sensor includes pixels disposed in a substrate and a light collimating layer disposed on the substrate. The light collimating layer includes a first light-shielding layer, first transparent pillars, a second light-shielding layer, and second transparent pillars. The first light-shielding layer is disposed on the substrate. The first transparent pillars through the first light-shielding layer are correspondingly disposed on the pixels. The second light-shielding layer is disposed on the first light-shielding layer and the first transparent pillars. The second transparent pillars through the second light-shielding layer are correspondingly disposed on the first transparent pillars. The top surface area of each of the first transparent pillars is not equal to the bottom surface area of each of the second transparent pillars.
    Type: Application
    Filed: February 20, 2019
    Publication date: August 20, 2020
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Hui LEE, Han-Liang TSENG, Jiunn-Liang YU, Kwang-Ming LIN, Yin CHEN, Si-Twan CHEN, Hsueh-Jung LIN, Wen-Chih LU, Ting-Jung LU
  • Publication number: 20200249490
    Abstract: An optical sensor includes a plurality of pixels disposed in a substrate and a light collimating layer. The light collimating layer is disposed on the substrate. The light collimating layer includes a light-shielding layer, a plurality of transparent pillars, and a plurality of first dummy transparent pillars. The light-shielding layer is disposed on the substrate. The plurality of transparent pillars pass through the light-shielding layer and are disposed correspondingly on the plurality of pixels. The plurality of first dummy transparent pillars that pass through the light-shielding layer are disposed on a first peripheral region of the light collimating layer, wherein the plurality of first dummy transparent pillars surround the plurality of transparent pillars from a top view.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Hui LEE, Han-Liang TSENG, Jiunn-Liang YU, Kwang-Ming LIN, Yin CHEN, Si-Twan CHEN, Hsueh-Jung LIN, Wen-Chih LU, Ting-Jung LU
  • Publication number: 20200251506
    Abstract: An optical sensor includes pixels disposed in a substrate. A light collimating layer is disposed on the substrate and includes a transparent layer, a light-shielding layer, and transparent pillars. The transparent layer blanketly disposed on the substrate covers the pixels and the region between the pixels. The light-shielding layer is disposed on the transparent layer and between the transparent pillars. The transparent pillars penetrating through the light-shielding layer are correspondingly disposed on the pixels.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 6, 2020
    Applicant: Vanguard International Semiconductor Corporation
    Inventors: Hsin-Hui LEE, Han-Liang TSENG, Jiunn-Liang YU, Kwang-Ming LIN, Yin CHEN, Si-Twan CHEN, Hsueh-Jung LIN, Wen-Chih LU, Ting-Jung LU
  • Patent number: 9443943
    Abstract: The invention provides a semiconductor device. A buried layer is formed in a substrate. A first deep trench contact structure is formed in the substrate. The first deep trench contact structure comprises a conductor and a liner layer formed on a sidewall of the conductor. A bottom surface of the first deep trench contact structure is in contact with the buried layer.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: September 13, 2016
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Geeng-Lih Lin, Kwang-Ming Lin, Shang-Hui Tu, Jui-Chun Chang
  • Patent number: 9385260
    Abstract: A method for forming thin film solar cell materials introducing a first inert gas mixture that includes hydrogen selenide into a chamber at a first pressure value until the chamber reaches a second pressure value and at a first temperature value, wherein the second pressure value is a predefined percentage of the first pressure value. The temperature in the chamber is increased to a second temperature value for a selenization process so that the pressure in the chamber increases to a third pressure value. Residual gas that is generated during the selenization process can be removed from the chamber. A second inert gas mixture that includes hydrogen sulfide is added into the chamber until the chamber reaches a fourth pressure value. The temperature in the chamber is increased to a third temperature value for a sulfurization process. The chamber is cooled after the sulfurization process.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: July 5, 2016
    Assignee: TSMC Solar Ltd.
    Inventors: Kwang-Ming Lin, Chi-Wei Liu, Wen-Cheng Kuo