Patents by Inventor Kwangduk Douglas Lee

Kwangduk Douglas Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230317455
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about ?100 MPa to about 100 MPa.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Inventors: Prashant Kumar KULSHRESHTHA, Ziqing DUAN, Karthik Thimmavajjula NARASIMHA, Kwangduk Douglas LEE, Bok Hoen KIM
  • Publication number: 20230317463
    Abstract: Aspects generally relate to methods, systems, and apparatus for processing substrates using one or more amorphous carbon hardmask layers. In one aspect, film stress is altered while facilitating enhanced etch selectivity. In one implementation, a method of processing a substrate includes depositing one or more amorphous carbon hardmask layers onto the substrate, and conducting a rapid thermal anneal operation on the substrate after depositing the one or more amorphous carbon hardmask layers. The rapid thermal anneal operation lasts for an anneal time that is 60 seconds or less. The rapid thermal anneal operation includes heating the substrate to an anneal temperature that is within a range of 600 degrees Celsius to 1,000 degrees Celsius. The method includes etching the substrate after conducting the rapid thermal anneal operation.
    Type: Application
    Filed: June 5, 2023
    Publication date: October 5, 2023
    Inventors: Krishna NITTALA, Sarah Michelle BOBEK, Kwangduk Douglas LEE, Ratsamee LIMDULPAIBOON, Dimitri KIOUSSIS, Karthik JANAKIRAMAN
  • Publication number: 20230272525
    Abstract: The present disclosure relates to a method for in situ seasoning of process chamber components, such as electrodes. The method includes depositing a silicon oxide film over the process chamber component and converting the silicon oxide film to a silicon-carbon-containing film. The silicon-carbon-containing film forms a protective film over the process chamber components and is resistant to plasma processing and/or dry etch cleaning. The coatings has high density, good emissivity control, and reduces risk of device property drift.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Inventors: Sarah Michelle BOBEK, Abdul Aziz KHAJA, Ratsamee LIMDULPAIBOON, Kwangduk Douglas LEE
  • Patent number: 11728168
    Abstract: Implementations of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the implementations described herein provide techniques for deposition of boron-carbon films on a substrate. In one implementation, a method of processing a substrate is provided. The method comprises flowing a hydrocarbon-containing gas mixture into a processing volume of a processing chamber having a substrate positioned therein, wherein the substrate is heated to a substrate temperature from about 400 degrees Celsius to about 700 degrees Celsius, flowing a boron-containing gas mixture into the processing volume and generating an RF plasma in the processing volume to deposit a boron-carbon film on the heated substrate, wherein the boron-carbon film has an elastic modulus of from about 200 to about 400 GPa and a stress from about ?100 MPa to about 100 MPa.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: August 15, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Prashant Kumar Kulshreshtha, Ziqing Duan, Karthik Thimmavajjula Narasimha, Kwangduk Douglas Lee, Bok Hoen Kim
  • Patent number: 11699577
    Abstract: Exemplary methods of treating a chamber may include delivering a cleaning precursor to a remote plasma unit. The methods may include forming a plasma of the cleaning precursor. The methods may include delivering plasma effluents of the cleaning precursor to a processing region of a semiconductor processing chamber. The processing region may be defined by one or more chamber components. The one or more chamber components may include an oxide coating. The methods may include halting delivery of the plasma effluents. The methods may include treating the oxide coating with a hydrogen-containing material delivered to the processing region subsequent halting delivery of the plasma effluents.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Ruiyun Huang, Abdul Aziz Khaja, Amit Bansal, Dong Hyung Lee, Ganesh Balasubramanian, Tuan Anh Nguyen, Sungwon Ha, Anjana M. Patel, Ratsamee Limdulpaiboon, Karthik Janakiraman, Kwangduk Douglas Lee
  • Patent number: 11694902
    Abstract: Aspects generally relate to methods, systems, and apparatus for processing substrates using one or more amorphous carbon hardmask layers. In one aspect, film stress is altered while facilitating enhanced etch selectivity. In one implementation, a method of processing a substrate includes depositing one or more amorphous carbon hardmask layers onto the substrate, and conducting a rapid thermal anneal operation on the substrate after depositing the one or more amorphous carbon hardmask layers. The rapid thermal anneal operation lasts for an anneal time that is 60 seconds or less. The rapid thermal anneal operation includes heating the substrate to an anneal temperature that is within a range of 600 degrees Celsius to 1,000 degrees Celsius. The method includes etching the substrate after conducting the rapid thermal anneal operation.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: July 4, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Krishna Nittala, Sarah Michelle Bobek, Kwangduk Douglas Lee, Ratsamee Limdulpaiboon, Dimitri Kioussis, Karthik Janakiraman
  • Publication number: 20230203659
    Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.
    Type: Application
    Filed: February 20, 2023
    Publication date: June 29, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Sarah Michelle BOBEK, Venkata Sharat Chandra PARIMI, Prashant Kumar KULSHRESHTHA, Vinay K. PRABHAKAR, Kwangduk Douglas LEE, Sungwon HA, Jian LI
  • Patent number: 11674222
    Abstract: The present disclosure relates to a method for in situ seasoning of process chamber components, such as electrodes. The method includes depositing a silicon oxide film over the process chamber component and converting the silicon oxide film to a silicon-carbon-containing film. The silicon-carbon-containing film forms a protective film over the process chamber components and is resistant to plasma processing and/or dry etch cleaning. The coatings has high density, good emissivity control, and reduces risk of device property drift.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: June 13, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Abdul Aziz Khaja, Ratsamee Limdulpaiboon, Kwangduk Douglas Lee
  • Publication number: 20230151487
    Abstract: The present disclosure relates to systems and methods for reducing the formation of hardware residue and minimizing secondary plasma formation during substrate processing in a process chamber. The process chamber may include a gas distribution member configured to flow a first gas into a process volume and generate a plasma therefrom. A second gas is supplied into a lower region of the process volume. Further, an exhaust port is disposed in the lower region to remove excess gases or by-products from the process volume during or after processing.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 18, 2023
    Inventors: Liangfa HU, Prashant Kumar KULSHRESHTHA, Anjana M. PATEL, Abdul Aziz KHAJA, Viren KALSEKAR, Vinay K. PRABHAKAR, Satya Teja Babu THOKACHICHU, Byung Seok KWON, Ratsamee LIMDULPAIBOON, Kwangduk Douglas LEE, Ganesh BALASUBRAMANIAN
  • Patent number: 11584994
    Abstract: Aspects of the present disclosure relate generally to pedestals, components thereof, and methods of using the same for substrate processing chambers. In one implementation, a pedestal for disposition in a substrate processing chamber includes a body. The body includes a support surface. The body also includes a stepped surface that protrudes upwards from the support surface. The stepped surface is disposed about the support surface to surround the support surface. The stepped surface defines an edge ring such that the edge ring is integrated with the pedestal to form the body that is monolithic. The pedestal also includes an electrode disposed in the body, and one or more heaters disposed in the body.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Kwangduk Douglas Lee, Sungwon Ha, Jian Li
  • Publication number: 20230041963
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 9, 2023
    Inventors: Rajesh PRASAD, Sarah BOBEK, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL, Scott FALK, Venkataramana R. CHAVVA
  • Publication number: 20230029929
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 2, 2023
    Inventors: Rajesh PRASAD, Sarah BOBEK, Prashant Kumar KULSHRESHTHA, Kwangduk Douglas LEE, Harry WHITESELL, Hidetaka OSHIO, Dong Hyung LEE, Deven Matthew Raj MITTAL, Scott FALK, Venkataramana R. CHAVVA
  • Patent number: 11560623
    Abstract: The present disclosure relates to systems and methods for reducing the formation of hardware residue and minimizing secondary plasma formation during substrate processing in a process chamber. The process chamber may include a gas distribution member configured to flow a first gas into a process volume and generate a plasma therefrom. A second gas is supplied into a lower region of the process volume. Further, an exhaust port is disposed in the lower region to remove excess gases or by-products from the process volume during or after processing.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: January 24, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Liangfa Hu, Prashant Kumar Kulshreshtha, Anjana M. Patel, Abdul Aziz Khaja, Viren Kalsekar, Vinay K. Prabhakar, Satya Teja Babu Thokachichu, Byung Seok Kwon, Ratsamee Limdulpaiboon, Kwangduk Douglas Lee, Ganesh Balasubramanian
  • Publication number: 20220384161
    Abstract: Exemplary methods of treating a chamber may include delivering a cleaning precursor to a remote plasma unit. The methods may include forming a plasma of the cleaning precursor. The methods may include delivering plasma effluents of the cleaning precursor to a processing region of a semiconductor processing chamber. The processing region may be defined by one or more chamber components. The one or more chamber components may include an oxide coating. The methods may include halting delivery of the plasma effluents. The methods may include treating the oxide coating with a hydrogen-containing material delivered to the processing region subsequent halting delivery of the plasma effluents.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 1, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Ruiyun Huang, Abdul Aziz Khaja, Amit Bansal, Dong Hyung Lee, Ganesh Balasubramanian, Tuan Anh Nguyen, Sungwon Ha, Anjana M. Patel, Ratsamee Limdulpaiboon, Karthik Janakiraman, Kwangduk Douglas Lee
  • Patent number: 11469107
    Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: October 11, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
  • Publication number: 20220262643
    Abstract: Aspects generally relate to methods, systems, and apparatus for processing substrates using one or more amorphous carbon hardmask layers. In one aspect, film stress is altered while facilitating enhanced etch selectivity. In one implementation, a method of processing a substrate includes depositing one or more amorphous carbon hardmask layers onto the substrate, and conducting a rapid thermal anneal operation on the substrate after depositing the one or more amorphous carbon hardmask layers. The rapid thermal anneal operation lasts for an anneal time that is 60 seconds or less. The rapid thermal anneal operation includes heating the substrate to an anneal temperature that is within a range of 600 degrees Celsius to 1,000 degrees Celsius. The method includes etching the substrate after conducting the rapid thermal anneal operation.
    Type: Application
    Filed: February 18, 2021
    Publication date: August 18, 2022
    Inventors: Krishna NITTALA, Sarah Michelle BOBEK, Kwangduk Douglas LEE, Ratsamee LIMDULPAIBOON, Dimitri KIOUSSIS, Karthik JANAKIRAMAN
  • Patent number: 11322352
    Abstract: Disclosed herein is a method and apparatus for forming carbon hard masks to improve deposition uniformity and etch selectivity. The carbon hard mask may be formed in a PECVD process chamber and is a nitrogen-doped carbon hardmask. The nitrogen-doped carbon hardmask is formed using a nitrogen containing gas, an argon containing gas, and a hydrocarbon gas.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: May 3, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Xiaoquan Min, Lu Xu, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee
  • Publication number: 20220130650
    Abstract: Exemplary semiconductor processing systems may include a chamber body including sidewalls and a base. The system may include a substrate support extending through the base of the chamber body. The chamber body may define an access circumferentially extending about the substrate support at the base of the chamber body. The system may include one or more isolators disposed within the chamber body. The one or more isolators may define an exhaust path between the one or more isolators and the chamber body. The exhaust path may extend to the base of the chamber body. The systems may include a fluid source fluidly coupled with the chamber body at the access extending about the substrate support.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sarah Michelle Bobek, Venkata Sharat Chandra Parimi, Sungwon Ha, Kwangduk Douglas Lee
  • Publication number: 20220122873
    Abstract: Exemplary semiconductor processing systems include a processing chamber, a power supply, and a chuck disposed at least partially within the processing chamber. The chuck includes a chuck body defining a vacuum port. The chuck also includes first and second coplanar electrodes embedded in the chuck body and connected to the power supply. In some examples, coplanar electrodes include concentric electrodes defining a concentric gap in between. Exemplary semiconductor processing methods may include activating the power supply for the electrostatic chuck to secure a semiconductor substrate on the body of the chuck and/or activating the vacuum port defined by the body of the electrostatic chuck. Some processing can be carried out at increased pressure, while other processing can be carried out at reduced pressure with increased chucking voltage.
    Type: Application
    Filed: October 19, 2020
    Publication date: April 21, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jian Li, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Paul L. Brillhart, Akshay Gunaji, Mayur Govind Kulkarni, Sandeep Bindgi, Sanjay Kamath, Kwangduk Douglas Lee, Zongbin Wang, Yubin Zhang, Yong Xiang Lim
  • Publication number: 20220098728
    Abstract: The present disclosure relates to a method for in situ seasoning of process chamber components, such as electrodes. The method includes depositing a silicon oxide film over the process chamber component and converting the silicon oxide film to a silicon-carbon-containing film. The silicon-carbon-containing film forms a protective film over the process chamber components and is resistant to plasma processing and/or dry etch cleaning. The coatings has high density, good emissivity control, and reduces risk of device property drift.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Inventors: Sarah Michelle BOBEK, Abdul Aziz Khaja, Ratsamee Limdulpaiboon, Kwangduk Douglas Lee