Patents by Inventor Kyle Jordan Blakeney

Kyle Jordan Blakeney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240052486
    Abstract: Molybdenum-containing films are deposited on semiconductor substrates using reactions of molybdenum-containing precursors in ALD and CVD processes. In some embodiments, the precursors can be used for deposition of molybdenum metal films with low levels of incorporation of carbon and nitrogen. In some embodiments, the films are deposited using fluorine-free precursors in a presence of exposed silicon-containing layers without using etch stop layers. The precursor, in some embodiments, is a compound that includes molybdenum, at least one halogen that forms a bond with molybdenum, and at least one organic ligand that includes an element selected from the group consisting of N, O, and S, that forms a bond with molybdenum. In another aspect, the precursor is a molybdenum compound with at least one sulfur-containing ligand, and preferably no molybdenum-carbon bonds.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 15, 2024
    Inventor: Kyle Jordan BLAKENEY
  • Patent number: 11821071
    Abstract: Molybdenum-containing films are deposited on semiconductor substrates using reactions of molybdenum-containing precursors in ALD and CVD processes. In some embodiments, the precursors can be used for deposition of molybdenum metal films with low levels of incorporation of carbon and nitrogen. In some embodiments, the films are deposited using fluorine-free precursors in a presence of exposed silicon-containing layers without using etch stop layers. The precursor, in some embodiments, is a compound that includes molybdenum, at least one halogen that forms a bond with molybdenum, and at chamber least one organic ligand that includes an element selected from the group consisting of N, O, and S, that forms a bond with molybdenum, In another aspect, the precursor is a molybdenum, compound with at least one sulfur-containing ligand, and preferably no molybdenum-carbon bonds.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: November 21, 2023
    Assignee: Lam Research Corporation
    Inventor: Kyle Jordan Blakeney
  • Publication number: 20230314946
    Abstract: The present disclosure relates to a film formed with a metal precursor and an organic precursor, as well as methods for forming and employing such films. The film can be employed as a photopatternable film or a radiation-sensitive film. In particular embodiments, the film includes alternating layers of metal-containing layers and organic layers. In other embodiments, the film includes a matrix of deposited metal and organic constituents.
    Type: Application
    Filed: July 16, 2021
    Publication date: October 5, 2023
    Inventors: Eric Calvin Hansen, Timothy William Weidman, Chenghao Wu, Qinghuang Lin, Kyle Jordan Blakeney, Adrien LaVoie, Sivananda Krishnan Kanakasabapathy, Samantha S.H. Tan, Richard Wise, Yang Pan, Younghee Lee, Katie Lynn Nardi, Kevin Li Gu, Boris Volosskiy
  • Publication number: 20230298936
    Abstract: An electrically conductive structure in an integrated circuit (IC) includes recessed features in a dielectric layer filled with metal. The recessed features include a conformal, self-forming diffusion barrier and seed layer to limit oxidation of the metal into ions that will diffuse through the dielectric.
    Type: Application
    Filed: August 10, 2021
    Publication date: September 21, 2023
    Inventors: Kyle Jordan Blakeney, Yezdi Dordi
  • Publication number: 20230260834
    Abstract: Various embodiments herein relate to methods, apparatus, and systems for forming an interconnect structure, or a portion thereof, on a substrate. In one example, the method includes receiving the substrate in a processing chamber, the substrate having dielectric material exposed within recessed features formed therein; exposing the substrate to plasma to thereby modify a top surface of the dielectric material; forming a metal oxide barrier layer on the modified top surface of the dielectric material, wherein the metal oxide barrier layer is formed through atomic layer deposition and/or chemical vapor deposition. In certain implementations, one or more additional step may be taken to improve processing results, for example to promote nucleation and/or adhesion of relevant layers.
    Type: Application
    Filed: June 25, 2021
    Publication date: August 17, 2023
    Inventors: Lee J. BROGAN, Patrick A. VAN CLEEMPUT, Matthew Martin HUIE, Kyle Jordan BLAKENEY, Yi Hua LIU
  • Publication number: 20230259025
    Abstract: The present disclosure relates to a film formed with a precursor and an organic co-reactant, as well as methods for forming and employing such films. The film can be employed as a photopatternable film or a radiation-sensitive film. In particular embodiments, the carbon content within the film can be tuned by decoupling the sources of the radiation-sensitive metal elements and the radiation-sensitive organic moieties during deposition. In non-limiting embodiments, the radiation can include extreme ultraviolet (EUV) or deep ultraviolet (DUV) radiation.
    Type: Application
    Filed: July 16, 2021
    Publication date: August 17, 2023
    Inventors: Eric Calvin Hansen, Timothy William Weidman, Chenghao Wu, Qinghuang Lin, Kyle Jordan Blakeney
  • Publication number: 20220298624
    Abstract: Substantially carbon-free molybdenum-containing and tungsten-containing films are deposited on semiconductor substrates using halide-free metalorganic precursors. The precursors do not include metal-carbon bonds, carbonyl ligands, and, preferably do not include beta-hydrogen atoms. Metal-containing films, such as molybdenum nitride, molybdenum oxynitride, molybdenum silicide, and molybdenum boride with carbon content of less than about 5% atomic, such as less than about 3% atomic are deposited. The films are deposited in some embodiments by reacting the metal-containing precursor with a reactant on a surface of a substrate in an absence of plasma, e.g. using several ALD cycles. In some embodiments the formed film is then treated with a second reactant in a plasma to modify its properties (e.g., to densify the film, to reduce resistivity of the film, or to increase its work function). The films can be used as liners, diffusion barriers, and as electrode material in pMOS devices.
    Type: Application
    Filed: August 10, 2020
    Publication date: September 22, 2022
    Inventors: Kyle Jordan Blakeney, Chiukin Steven Lai, Thomas M. Pratt, Eric H. Lenz, Jason Stevens
  • Publication number: 20220170155
    Abstract: Molybdenum-containing films are deposited on semiconductor substrates using reactions of molybdenum-containing precursors in ALD and CVD processes. In some embodiments, the precursors can be used for deposition of molybdenum metal films with low levels of incorporation of carbon and nitrogen. In some embodiments, the films are deposited using fluorine-free precursors in a presence of exposed silicon-containing layers without using etch stop layers. The precursor, in some embodiments, is a compound that includes molybdenum, at least one halogen that forms a bond with molybdenum, and at chamber least one organic ligand that includes an element selected from the group consisting of N, O, and S, that forms a bond with molybdenum, In another aspect, the precursor is a molybdenum, compound with at least one sulfur-containing ligand, and preferably no molybdenum-carbon bonds.
    Type: Application
    Filed: March 6, 2020
    Publication date: June 2, 2022
    Inventor: Kyle Jordan Blakeney