Patents by Inventor Kyle M. Hanson

Kyle M. Hanson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145251
    Abstract: Conditions at the perimeter of the wafer may be characterized and used to adjust current stolen by the weir thief electrodes during a plating process to generate more uniform film thicknesses. An electrode may be positioned in a plating chamber near the periphery of the wafer as the wafer rotates. To characterize the electrical contacts on the seal, a wafer with a seed layer may be loaded into the plating chamber, and a constant current may be driven through the electrode into the conductive layer on the wafer. As an electrical characteristic of this current varies, such as a voltage required to drive a constant current, a mapping characterizing the seal quality or the openings in the mask layer may be generated.
    Type: Application
    Filed: October 26, 2022
    Publication date: May 2, 2024
    Applicant: Applied Materials, Inc.
    Inventor: Kyle M. Hanson
  • Patent number: 11788200
    Abstract: Exemplary electroplating apparatuses may include a system head operable to clamp a substrate. The system head may be operable to raise and lower the substrate between a plating bath, a first position above the plating bath, and a second position above the first position. The electroplating apparatuses may include a plating bath vessel adapted to hold the plating bath for electroplating on the substrate. The electroplating apparatuses may include a weir extending about the plating bath vessel. The electroplating apparatuses may include a first nozzle extending through the weir at a first radial position, and positioned to deliver fluid to the substrate at the first position above the plating bath. The electroplating apparatuses may include a second nozzle extending through the weir at a second radial position, and positioned to deliver fluid to the substrate at the second position above the plating bath.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: October 17, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sam Lee, Kyle M. Hanson, Eric J. Bergman
  • Publication number: 20230313405
    Abstract: Embodiments of the present technology include electroplating methods that include providing a first portion of an electrolyte feedstock to a first compartment of an electrochemical cell. The first portion of an electrolyte feedstock may be characterized by an initial metal ion concentration and an initial acid concentration. The methods may include providing a second portion of an electrolyte feedstock to a second compartment of the electrochemical cell. The second compartment and first compartment may be separated by a first membrane. The methods may include providing an acidic solution to a third compartment of the electrochemical cell. The third compartment and second compartment may be separated by a second membrane. The acidic solution may be characterized by an initial acid concentration. The methods may include applying a current to an anode of the electrochemical cell. The anode of the electrochemical cell may be disposed proximate the first compartment and across from the first membrane.
    Type: Application
    Filed: April 3, 2023
    Publication date: October 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Paul R. McHugh, Gregory J. Wilson, Kwan Wook Roh, Kyle M. Hanson, Forrest G. Reinhart, David J. Reis, James E. Brown, Nolan L. Zimmerman
  • Publication number: 20230313406
    Abstract: Electroplating methods may include providing an electrolyte feedstock comprising copper to a first compartment of an electrochemical cell. The methods may include providing an acidic solution to a second compartment of the electrochemical cell. The first compartment and second compartment may be separated by a membrane. The methods may include applying a current to an anode of the electrochemical cell. The anode of the electrochemical cell may be disposed proximate the first compartment and across from the membrane. The methods may include forming an anolyte and catholyte precursor.
    Type: Application
    Filed: April 3, 2023
    Publication date: October 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Paul R. McHugh, Forrest G. Reinhart, Gregory J. Wilson, Kwan Wook Roh, Kyle M. Hanson, James E. Brown, David J. Reis
  • Publication number: 20230272546
    Abstract: Electroplating methods and systems are described that include adding a metal-ion-containing starting solution to a catholyte to increase a metal ion concentration in the catholyte to a first metal ion concentration. The methods and systems further include measuring the metal ion concentration in the catholyte while the metal ions electroplate onto a substrate and the catholyte reaches a second metal ion concentration that is less than the first metal ion concentration. The methods and systems additionally include adding a portion of an anolyte directly to the catholyte when the catholyte reaches the second metal ion concentration. The addition of the portion of the anolyte increases the metal ion concentration in the catholyte to a third metal ion concentration that is greater than or about the first metal ion concentration.
    Type: Application
    Filed: May 9, 2023
    Publication date: August 31, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Kwan Wook Roh, Charles Sharbono, Kyle M. Hanson
  • Patent number: 11697887
    Abstract: Electroplating systems may include an electroplating chamber. The systems may also include a replenish assembly fluidly coupled with the electroplating chamber. The replenish assembly may include a first compartment housing anode material. The first compartment may include a first compartment section in which the anode material is housed and a second compartment section separated from the first compartment section by a divider. The replenish assembly may include a second compartment fluidly coupled with the electroplating chamber and electrically coupled with the first compartment. The replenish assembly may also include a third compartment electrically coupled with the second compartment, the third compartment including an inert cathode.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nolan L. Zimmerman, Charles Sharbono, Gregory J. Wilson, Paul R. McHugh, Paul Van Valkenburg, Deepak Saagar Kalaikadal, Kyle M. Hanson
  • Patent number: 11686005
    Abstract: Electroplating methods and systems are described that include adding a metal-ion-containing starting solution to a catholyte to increase a metal ion concentration in the catholyte to a first metal ion concentration. The methods and systems further include measuring the metal ion concentration in the catholyte while the metal ions electroplate onto a substrate and the catholyte reaches a second metal ion concentration that is less than the first metal ion concentration. The methods and systems additionally include adding a portion of an anolyte directly to the catholyte when the catholyte reaches the second metal ion concentration. The addition of the portion of the anolyte increases the metal ion concentration in the catholyte to a third metal ion concentration that is greater than or about the first metal ion concentration.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: June 27, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kwan Wook Roh, Charles Sharbono, Kyle M. Hanson
  • Publication number: 20230167573
    Abstract: An electroplating system has a vessel assembly holding an electrolyte. A weir thief electrode assembly in the vessel assembly includes a plenum inside of a weir frame. The plenum divided into at least a first, a second and a third virtual thief electrode segment. A plurality of spaced apart openings through the weir frame lead out of the plenum. A weir ring is attached to the weir frame and guides flow of current during electroplating. The electroplating system provides process determined radial and circumferential current density control and does not require changing hardware components during set up.
    Type: Application
    Filed: January 24, 2023
    Publication date: June 1, 2023
    Inventors: Paul R. McHugh, Gregory J. Wilson, Kyle M. Hanson, John L. Klocke, Paul Van Valkenburg, Eric J. Bergman, Adam Marc McClure, Deepak Saagar Kalaikadal, Nolan Layne Zimmerman, Michael Windham, Mikael R. Borjesson
  • Patent number: 11578422
    Abstract: An electroplating system has a vessel assembly holding an electrolyte. A weir thief electrode assembly in the vessel assembly includes a plenum inside of a weir frame. The plenum divided into at least a first, a second and a third virtual thief electrode segment. A plurality of spaced apart openings through the weir frame lead out of the plenum. A weir ring is attached to the weir frame and guides flow of current during electroplating. The electroplating system provides process determined radial and circumferential current density control and does not require changing hardware components during set up.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: February 14, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Paul R. McHugh, Gregory J. Wilson, Kyle M. Hanson, John L. Klocke, Paul Van Valkenburg, Eric J. Bergman, Adam Marc McClure, Deepak Saagar Kalaikadal, Nolan Layne Zimmerman, Michael Windham, Mikael R. Borjesson
  • Patent number: 11550224
    Abstract: Embodiments described herein relate to methods and apparatus for performing immersion field guided post exposure bake processes. Embodiments of apparatus described herein include a chamber body defining a processing volume. Electrodes may be disposed adjacent the process volume and process fluid is provided to the process volume via a plurality of fluid conduits to facilitate immersion field guided post exposure bake processes. A post process chamber for rinsing, developing, and drying a substrate is also provided.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: January 10, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kyle M. Hanson, Gregory J. Wilson, Viachslav Babayan
  • Publication number: 20220259756
    Abstract: Exemplary electroplating apparatuses may include a system head operable to clamp a substrate. The system head may be operable to raise and lower the substrate between a plating bath, a first position above the plating bath, and a second position above the first position. The electroplating apparatuses may include a plating bath vessel adapted to hold the plating bath for electroplating on the substrate. The electroplating apparatuses may include a weir extending about the plating bath vessel. The electroplating apparatuses may include a first nozzle extending through the weir at a first radial position, and positioned to deliver fluid to the substrate at the first position above the plating bath. The electroplating apparatuses may include a second nozzle extending through the weir at a second radial position, and positioned to deliver fluid to the substrate at the second position above the plating bath.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sam Lee, Kyle M. Hanson, Eric J. Bergman
  • Patent number: 11352711
    Abstract: Cleaning substrates or electroplating system components may include methods of rinsing a substrate at a semiconductor plating chamber. The methods may include moving a head from a plating bath to a first position. The head may include a substrate coupled with the head. The methods may include rotating the head for a first period of time to sling bath fluid back into the plating bath. A residual amount of bath fluid may remain. The methods may include delivering a first fluid to the substrate from a first fluid nozzle to at least partially expel the residual amount of bath fluid back into the plating bath. The methods may include moving the head to a second position. The methods may include rotating the head for a second period of time. The methods may also include delivering a second fluid across the substrate from a second fluid nozzle.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: June 7, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Sam Lee, Kyle M. Hanson, Eric J. Bergman
  • Publication number: 20220145489
    Abstract: An electroplating system has a vessel assembly holding an electrolyte. A weir thief electrode assembly in the vessel assembly includes a plenum inside of a weir frame. The plenum divided into at least a first, a second and a third virtual thief electrode segment. A plurality of spaced apart openings through the weir frame lead out of the plenum. A weir ring is attached to the weir frame and guides flow of current during electroplating. The electroplating system provides process determined radial and circumferential current density control and does not require changing hardware components during set up.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Paul R. McHugh, Gregory J. Wilson, Kyle M. Hanson, John L. Klocke, Paul Van Valkenburg, Eric J. Bergman, Adam Marc McClure, Deepak Saagar Kalaikadal, Nolan Layne Zimmerman, Michael Windham, Mikael R. Borjesson
  • Publication number: 20220127747
    Abstract: Electroplating systems may include an electroplating chamber. The systems may also include a replenish assembly fluidly coupled with the electroplating chamber. The replenish assembly may include a first compartment housing anode material. The first compartment may include a first compartment section in which the anode material is housed and a second compartment section separated from the first compartment section by a divider. The replenish assembly may include a second compartment fluidly coupled with the electroplating chamber and electrically coupled with the first compartment. The replenish assembly may also include a third compartment electrically coupled with the second compartment, the third compartment including an inert cathode.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Nolan L. Zimmerman, Charles Sharbono, Gregory J. Wilson, Paul R. McHugh, Paul Van Valkenburg, Deepak Saagar Kalaikadal, Kyle M. Hanson
  • Patent number: 11274377
    Abstract: Electroplating system seals may include an annular busbar characterized by an inner annular radius and an outer annular radius. The annular busbar may include a plurality of contact extensions. The seals may include an external seal member characterized by an inner annular radius and an outer annular radius. The external seal member may be vertically aligned with and extend inward of the contact extensions at the inner annular radius of the external seal member. The external seal member may include an interior surface at least partially facing the contact extensions. The seals may also include an internal seal member extending a first distance along the interior surface of the external seal member from the inner annular radius. The internal seal member may include a deformable material configured to support a substrate between the internal seal member and the plurality of contact extensions.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kyle M. Hanson, Manjunatha Vishwanatha Adagoor, Karthikeyan Balaraman, Karthick Vasu, Shailesh Chouriya
  • Patent number: 11268208
    Abstract: An electroplating system has a vessel assembly holding an electrolyte. A weir thief electrode assembly in the vessel assembly includes a plenum inside of a weir frame. The plenum divided into at least a first, a second and a third virtual thief electrode segment. A plurality of spaced apart openings through the weir frame lead out of the plenum. A weir ring is attached to the weir frame and guides flow of current during electroplating. The electroplating system provides process determined radial and circumferential current density control and does not require changing hardware components during set up.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: March 8, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Paul R McHugh, Gregory J Wilson, Kyle M Hanson, John L Klocke, Paul Van Valkenburg, Eric J Bergman, Adam Marc McClure, Deepak Saagar Kalaikadal, Nolan Layne Zimmerman, Michael Windham, Mikael R Borjesson
  • Patent number: 11262662
    Abstract: Implementations described herein relate to a platform apparatus for post exposure processing. In one implementation, a platform apparatus includes a plumbing module and a process module. The process module further includes a central region having a robot disposed therein, and a plurality of process stations disposed about the central region and sharing the plumbing module. Each process station includes a process chamber and a post process chamber in a stacked arrangement. The process chamber includes a chamber body defining a process volume, a door coupled to the chamber body, a first electrode coupled to the door, and a power source communicatively coupled to the first electrode.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: March 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Viachslav Babayan, Ludovic Godet, Kyle M. Hanson, Robert B. Moore
  • Patent number: 11241718
    Abstract: Systems for cleaning electroplating system components may include a seal cleaning assembly incorporated with an electroplating system. The seal cleaning assembly may include an arm pivotable between a first position and a second position. The arm may be rotatable about a central axis of the arm. The seal cleaning assembly may include a cleaning head coupled with a distal portion of the arm. The cleaning head may include a bracket having a faceplate coupled with the arm, and a housing extending from the faceplate. The housing may define one or more arcuate channels extending through the housing to a front surface of the bracket. The cleaning head may also include a rotatable cartridge extending from the housing of the bracket. The cartridge may include a mount cylinder defining one or more apertures configured to deliver a cleaning solution to a pad coupled about the mount cylinder.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: February 8, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Antony Jonathan, Kyle M. Hanson, Jason A. Rye, James E. Brown, Gregory J. Wilson, Eric J. Bergman, Tricia A. Youngbull, Timothy G. Stolt
  • Patent number: 11214890
    Abstract: Systems for cleaning electroplating system components may include a seal cleaning assembly incorporated with an electroplating system. The seal cleaning assembly may include an arm pivotable between a first position and a second position. The arm may be rotatable about a central axis of the arm. The seal cleaning assembly may also include a cleaning head including a bracket portion coupled with a distal portion of the arm. The cleaning head may be characterized by a front portion formed to interface with a seal of the electroplating apparatus. The cleaning head may define a trench along the front portion, and the cleaning head may define a plurality of fluid channels through the cleaning head, each fluid channel of the plurality of fluid channels fluidly accessing a backside of the trench.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: January 4, 2022
    Assignee: Applied Materials, Inc.
    Inventor: Kyle M. Hanson
  • Publication number: 20210348296
    Abstract: An electroplating system has a vessel assembly holding an electrolyte. A weir thief electrode assembly in the vessel assembly includes a plenum inside of a weir frame. The plenum divided into at least a first, a second and a third virtual thief electrode segment. A plurality of spaced apart openings through the weir frame lead out of the plenum. A weir ring is attached to the weir frame and guides flow of current during electroplating. The electroplating system provides process determined radial and circumferential current density control and does not require changing hardware components during set up.
    Type: Application
    Filed: May 8, 2020
    Publication date: November 11, 2021
    Inventors: Paul R McHugh, Gregory J Wilson, Kyle M Hanson, John L Klocke, Paul Van Valkenburg, Eric J Bergman, Adam Marc McClure, Deepak Saagar Kalaikadal, Nolan Layne Zimmerman, Michael Windham, Mikael R Borjesson