Patents by Inventor Kyu Oh Lee

Kyu Oh Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200168384
    Abstract: Described herein are magnetic core inductors (MCI) and methods for manufacturing magnetic core inductors. A first embodiment of the MCI can be a snake-configuration MCI. The snake-configuration MCI can be formed by creating an opening in a base material, such as copper, and providing a nonconductive magnetic material in the opening. The inductor can be further formed by forming plated through holes into the core material. The conductive elements for the inductor can be formed in the plated through holes. The nonconductive magnetic material surrounds each conductive element and plated through hole. In embodiments, a layered coil inductor can be formed by drilling a laminate to form a cavity through the laminate within the metal rings of the layered coil inductor. The nonconductive magnetic material can be provided in the cavity.
    Type: Application
    Filed: September 28, 2017
    Publication date: May 28, 2020
    Applicant: Intel Corporation
    Inventors: Junnan Zhao, Ying Wang, Cheng Xu, Kyu Oh Lee, Sheng Li, Yikang Deng
  • Publication number: 20200168569
    Abstract: Semiconductor packages having a first layer interconnect portion that includes a coaxial interconnect between a die and a package substrate are described. In an example, the package substrate includes a substrate-side coaxial interconnect electrically connected to a signal line. The die is mounted on the package substrate and includes a die-side coaxial interconnect coupled to the substrate-side coaxial interconnect. The coaxial interconnects can be joined by a solder bond between respective central conductors and shield conductors.
    Type: Application
    Filed: March 30, 2017
    Publication date: May 28, 2020
    Inventors: Sai VADLAMANI, Aleksandar ALEKSOV, Rahul JAIN, Kyu Oh LEE, Kristof Kuwawi DARMAWIKARTA, Robert Alan MAY, Sri Ranga Sai BOYAPATI, Telesphor KAMGAING
  • Patent number: 10643994
    Abstract: Disclosed embodiments include an embedded thin-film capacitor and a magnetic inductor that are assembled in two adjacent build-up layers of a semiconductor package substrate. The thin-film capacitor is seated on a surface of a first of the build-up layers and the magnetic inductor is partially disposed in a recess in the adjacent build up layer. The embedded thin-film capacitor and the integral magnetic inductor are configured within a die shadow that is on a die side of the semiconductor package substrate.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 5, 2020
    Assignee: Intel Corporation
    Inventors: Cheng Xu, Rahul Jain, Seo Young Kim, Kyu Oh Lee, Ji Yong Park, Sai Vadlamani, Junnan Zhao
  • Publication number: 20200119250
    Abstract: A semiconductor device package structure is provided. The semiconductor device package structure includes a substrate, a die coupled to the substrate, and a thermoelectric device. The thermoelectric device may include a P-type semiconductor material, a N-type semiconductor material, and a plurality of interconnect structures to transmit current through the P-type and N-type semiconductor material. In an example, the P-type semiconductor material and the N-type semiconductor material may be at least in part embedded within the substrate. The thermoelectric device has a first side proximal to the die, and a second side separated from the die by the first side.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Applicant: Intel Corporation
    Inventors: Cheng Xu, Zhimin Wan, Yikang Deng, Junnan Zhao, Chong Zhang, Ying Wang, Kyu-oh Lee
  • Publication number: 20200118990
    Abstract: A semiconductor device package structure is provided. The semiconductor device package structure includes a substrate having a cavity, and phase change material within the cavity. In an example, the phase change material has a phase change temperature lower than 120 degree centigrade. A die may be coupled to the substrate. In an example, the semiconductor device package structure includes one or more interconnect structures that are to couple the die to the phase change material within the cavity.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Applicant: Intel Corporation
    Inventors: Cheng Xu, Zhimin Wan, Yikang Deng, Junnan Zhao, Chong Zhang, Chandra Mohan M. Jha, Ying Wang, Kyu-oh Lee
  • Publication number: 20200075473
    Abstract: Disclosed herein are integrated circuit (IC) package substrates formed with a dielectric bi-layer, and related devices and methods. In some embodiments, an IC package substrate is fabricated by: forming a raised feature on a conductive layer; forming a dielectric bi-layer on the conductive layer, where the dielectric bi-layer includes a first sub-layer having a first material property and a second sub-layer having a second material property, and where the top surface of the second sub-layer is substantially planar with the top surface of the raised feature; and removing the first sub-layer until the second material property is detected to reveal the conductive feature. In some embodiments, an IC package substrate is fabricated by: forming a dielectric bi-layer on a patterned conductive layer, where the first sub-layer is less susceptible to removal than the second sub-layer; forming an opening in the dielectric bi-layer; etching; and forming a via having vertical sidewalls.
    Type: Application
    Filed: May 23, 2017
    Publication date: March 5, 2020
    Applicant: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli, David Unruh, Frank Truong, Kyu Oh Lee, Junnan Zhao, Sri Chaitra Jyotsna Chavali
  • Publication number: 20200066622
    Abstract: Embodiments disclosed herein include an electronics package and methods of forming such electronics packages. In an embodiment, the electronics package comprises a plurality of build-up layers. In an embodiment, the build-up layers comprise conductive traces and vias. In an embodiment, the electronics package further comprises a capacitor embedded in the plurality of build-up layers. In an embodiment, the capacitor comprises: a first electrode, a high-k dielectric layer over portions of the first electrode, and a second electrode over portions of the high-k dielectric layer.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 27, 2020
    Inventors: Rahul JAIN, Kyu Oh LEE
  • Publication number: 20200066543
    Abstract: Disclosed herein are cavity structures in integrated circuit (IC) package supports, as well as related methods and apparatuses. For example, in some embodiments, an IC package support may include: a cavity in a dielectric material, wherein the cavity has a bottom and sidewalls; conductive contacts at the bottom of the cavity, wherein the conductive contacts include a first material; a first peripheral material outside the cavity, wherein the first peripheral material is at the sidewalls of the cavity and proximate to the bottom of the cavity, and the first peripheral material includes the first material; and a second peripheral material outside the cavity, wherein the second peripheral material is at the sidewalls of the cavity and on the first peripheral material, and the second peripheral material is different than the first peripheral material.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 27, 2020
    Applicant: Intel Corporation
    Inventors: Rahul Jain, Sai Vadlamani, Junnan Zhao, Ji Yong Park, Kyu Oh Lee, Cheng Xu
  • Publication number: 20200027856
    Abstract: Examples relate to a die interconnect substrate comprising a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate further comprises a substrate structure comprising a substrate interconnect electrically insulated from the bridge die, wherein the bridge die is embedded in the substrate structure. The die interconnect substrate further comprises a first interface structure for attaching a semiconductor die to the substrate structure, wherein the first interface structure is connected to the first bridge die pad. The die interconnect substrate further comprises a second interface structure for attaching a semiconductor die to the substrate structure, wherein the second interface structure is connected to the substrate interconnect. A surface of the first interface structure and a surface of the second interface structure are at the same height.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Rahul JAIN, Ji Yong PARK, Kyu Oh LEE
  • Publication number: 20200008302
    Abstract: A package substrate is disclosed. The package substrate includes a substrate core, a cavity below the substrate core that extends from a surface of a first resist layer to a bottom surface of the package substrate, and a first terminal and a second terminal in the first resist layer. The package substrate also includes one or more passive components that are coupled inside the cavity to the first terminal and the second terminal.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Rahul JAIN, Prithwish CHATTERJEE, Kyu-oh LEE
  • Publication number: 20200006210
    Abstract: A chip package that includes a die coupled to a package substrate. The substrate includes a first ground layer and a dielectric material engaging the first ground layer. A solder resist layer engages the dielectric material and a routing layer is disposed at least partially within the solder resist layer. A second ground layer engages the solder resist layer.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Inventors: Cheng Xu, Kyu Oh Lee, Junnan Zhao, Rahul Jain, Ji Yong Park
  • Publication number: 20200005994
    Abstract: Apparatuses, systems and methods associated with a substrate assembly with an encapsulated magnetic feature for an inductor are disclosed herein. In embodiments, a substrate assembly may include a base substrate, a magnetic feature encapsulated within the base substrate, and a coil, wherein a portion of the coil extends through the magnetic feature. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 2, 2020
    Inventors: Kyu-Oh LEE, Rahul JAIN, Sai VADLAMANI, Cheng XU, Ji Yong PARK, Junnan ZHAO, Seo Young KIM
  • Publication number: 20190393217
    Abstract: Disclosed embodiments include an embedded thin-film capacitor and a magnetic inductor that are assembled in two adjacent build-up layers of a semiconductor package substrate. The thin-film capacitor is seated on a surface of a first of the build-up layers and the magnetic inductor is partially disposed in a recess in the adjacent build up layer. The embedded thin-film capacitor and the integral magnetic inductor are configured within a die shadow that is on a die side of the semiconductor package substrate.
    Type: Application
    Filed: May 3, 2019
    Publication date: December 26, 2019
    Inventors: Cheng Xu, Rahul Jain, Seo Young Kim, Kyu Oh Lee, Ji Yong Park, Sai Vadlamani, Junnan Zhao
  • Publication number: 20190385959
    Abstract: Techniques are provided for an inductor at a second level interface between a first substrate and a second substrate. In an example, the inductor can include a winding and a core disposed inside the winding. The winding can include first conductive traces of a first substrate, second conductive traces of a second non-semiconductor substrate, and a plurality of connectors configured to connect the first substrate with the second substrate. Each connector of the plurality of connecters can be located between a trace of the first conductive traces and a corresponding trace of the second conductive traces.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Inventors: Cheng Xu, Yikang Deng, Kyu Oh Lee, Ji Yong Park, Srinivas Pietambaram, Ying Wang, Chong Zhang, Rui Zhang, Junnan Zhao
  • Publication number: 20190385780
    Abstract: Techniques are provided for an inductor at a first level interface between a first die and a second die. In an example, the inductor can include a winding and a core disposed inside the winding. The winding can include first conductive traces of a first die, second conductive traces of a second die, and a plurality of connectors configured to connect the first die with the second die. Each connector of the plurality of connecters can be located between a trace of the first conductive traces and a corresponding trace of the second conductive traces.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Inventors: Cheng Xu, Yikang Deng, Kyu Oh Lee, Ji Yong Park, Srinivas Pietambaram, Ying Wang, Chong Zhang, Rui Zhang, Junnan Zhao
  • Publication number: 20190373736
    Abstract: Described herein are systems and methods for creating a cavity within a substrate. The systems and methods may include passing a plasma gas over a first surface of the substrate. The plasma gas may include a reactant gas. The systems and methods also may include removing a portion of the substrate by reacting the reactant gas with a constituent of the first surface of the substrate, thereby forming the cavity.
    Type: Application
    Filed: March 31, 2017
    Publication date: December 5, 2019
    Inventors: Rahul Jain, Kyu Oh Lee, Ji Yong Park, Sai Vadlamani
  • Publication number: 20190355675
    Abstract: Techniques for fabricating a semiconductor package having magnetic materials embedded therein are described. For one technique, fabrication of package includes: forming a pad and a conductive line on a build-up layer; forming a raised pad structure on the build-up layer, the raised pad comprising a pillar structure on the pad; encapsulating the conductive line and the raised pad structure in a magnetic film comprising one or more magnetic fillers; planarizing a top surface of the magnetic film until top surfaces of the raised pad structure and the magnetic film are co-planar; depositing a primer layer on the top surfaces; removing one or more portions of the primer layer above the raised pad structure to create an opening; and forming a via in the opening on the raised pad structure. The primer layer may comprise one or more of a build-up layer, a photoimageable dielectric layer, and a metal mask.
    Type: Application
    Filed: May 17, 2018
    Publication date: November 21, 2019
    Inventors: Kyu-Oh LEE, Sai VADLAMANI, Rahul JAIN, Junnan ZHAO, Ji Yong PARK, Cheng XU, Seo Young KIM
  • Publication number: 20190355654
    Abstract: Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate having a core substrate with a first conductive structure having a first thickness on the core substrate, and a second conductive structure having a second thickness on the core substrate, where the first thickness is different than the second thickness.
    Type: Application
    Filed: May 21, 2018
    Publication date: November 21, 2019
    Applicant: Intel Corporation
    Inventors: Cheng Xu, Jiwei Sun, Ji Yong Park, Kyu Oh Lee, Yikang Deng, Zhichao Zhang, Liwei Cheng, Andrew James Brown
  • Patent number: 10468352
    Abstract: Semiconductor packages with embedded bridge interconnects, and related assemblies and methods, are disclosed herein. In some embodiments, a semiconductor package may have a first side and a second side, and may include a bridge interconnect, embedded in a build-up material, having a first side with a plurality of conductive pads. The semiconductor package may also include a via having a first end that is narrower than a second end. The bridge interconnect and via may be arranged so that the first side of the semiconductor package is closer to the first side of the bridge interconnect than to the second side of the bridge interconnect, and so that the first side of the semiconductor package is closer to the first end of the via than to the second end of the via. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: November 5, 2019
    Assignee: Intel Corporation
    Inventor: Kyu-Oh Lee
  • Patent number: 10468374
    Abstract: Examples relate to a die interconnect substrate comprising a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate further comprises a substrate structure comprising a substrate interconnect electrically insulated from the bridge die, wherein the bridge die is embedded in the substrate structure. The die interconnect substrate further comprises a first interface structure for attaching a semiconductor die to the substrate structure, wherein the first interface structure is connected to the first bridge die pad. The die interconnect substrate further comprises a second interface structure for attaching a semiconductor die to the substrate structure, wherein the second interface structure is connected to the substrate interconnect. A surface of the first interface structure and a surface of the second interface structure are at the same height.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: November 5, 2019
    Assignee: Intel Corporation
    Inventors: Rahul Jain, Ji Yong Park, Kyu Oh Lee