Patents by Inventor Kyung Suk Oh

Kyung Suk Oh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150244365
    Abstract: On-die termination circuitry within a non-volatile memory device applies a first termination resistance to an I/O node in response to a data storage command indicating that a data signal conveyed on a bidirectional signaling line is to be received within the non-volatile memory device via the I/O node, and applies a second termination resistance to the I/O node in response to information indicating that another memory device is to output a data signal onto the bidirectional signaling line.
    Type: Application
    Filed: May 13, 2015
    Publication date: August 27, 2015
    Inventors: Kyung Suk Oh, Ian P. Shaeffer
  • Patent number: 9117496
    Abstract: A memory device comprising a programmable command-and-address (CA) interface and/or a programmable data interface is described. In an operational mode, two or more CA interfaces may be active. In another operational mode, at least one, but not all, CA interfaces may be active. In an operational mode, all of the data interfaces may be active. In another operational mode, at least one, but not all, data interfaces may be active. The memory device can include circuitry to select: an operational mode; a sub-mode within an operational mode; one or more CA interfaces as the active CA interface(s); a main CA interface from multiple active CA interfaces; and/or one or more data interfaces as the active data interfaces. The circuitry may perform these selection(s) based on one or more bits in one or more registers and/or one or more signals received on one or more pins.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: August 25, 2015
    Assignee: RAMBUS INC.
    Inventors: Ian Shaeffer, Lawrence Lai, Fan Ho, David A. Secker, Wayne S. Richardson, Akash Bansal, Brian S. Leibowitz, Kyung Suk Oh
  • Publication number: 20150236694
    Abstract: In a non-volatile memory device having an array of non-volatile storage elements, command, address and data signals are received at respective times via a time-multiplexed external signaling line, the data signals representing data to be stored within the array of non-volatile storage elements. A control signal is received via a signaling path external to the non-volatile memory device, and an on-die termination element is switchably coupled to the time-multiplexed signaling line at least in part in response to a transition of the control signal from a first logic state to a second logic state.
    Type: Application
    Filed: April 24, 2015
    Publication date: August 20, 2015
    Inventors: Kyung Suk Oh, Ian P. Shaeffer
  • Publication number: 20150229306
    Abstract: In a non-volatile memory device having an array of non-volatile storage elements, control information received via one or more control input nodes indicates, at different times, that (i) data signals representative of data to be stored within the array of non-volatile storage elements are to be received via a plurality of input/output (I/O) nodes of the non-volatile memory device, and (ii) data signals representative of data read from the array of non-volatile storage elements are to be output via the plurality of I/O nodes. First termination elements are switchably coupled to and decoupled from the I/O nodes based at least in part on the control information, and second termination elements are switchably coupled to and decoupled from the one or more control input nodes based at least in part on the control information.
    Type: Application
    Filed: April 24, 2015
    Publication date: August 13, 2015
    Inventors: Kyung Suk Oh, Ian P. Shaeffer
  • Publication number: 20150205751
    Abstract: A memory controller and/or memory device control termination of a communication link in order to achieve power savings while reducing or eliminating unwanted reflections in the channel. Following transmission of data over the communication channel, termination is left enabled for a programmable time period beginning immediately following completion of the transmission. The time period is sufficiently long to allow the unwanted reflections to be absorbed by the termination. Following the time period, the termination is disabled for power savings.
    Type: Application
    Filed: July 17, 2013
    Publication date: July 23, 2015
    Inventors: Kyung Suk Oh, Pravin Kumar Venkatesan, Yohan Usthavia Frans
  • Publication number: 20150170724
    Abstract: A system has a plurality of memory devices arranged in a fly-by topology, each having on-die termination (ODT) circuitry for connecting to an address and control (RQ) bus. The ODT circuitry of each memory device includes a set of one or more control registers for controlling on-die termination of one or more signal lines of the RQ bus. A first memory device includes a first set of one or more control registers storing a first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the first memory device, and a second memory device includes a second set of one or more control registers storing a second ODT value different from the first ODT value, for controlling termination of one or more signal lines of the RQ bus by the ODT circuitry of the second memory device.
    Type: Application
    Filed: February 3, 2015
    Publication date: June 18, 2015
    Inventors: Ian Shaeffer, Kyung Suk Oh
  • Patent number: 9059695
    Abstract: Described is a communication system in a first integrated circuit (IC) communicates with a second IC via single-ended communication channels. A bidirectional reference channel extends between the first and second ICs and is terminated on both ends. The termination impedances at each end of the reference channel support different modes for communicating signals in different directions. The termination impedances for the reference channel can be optimized for each signaling direction.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: June 16, 2015
    Assignee: Rambus Inc.
    Inventor: Kyung Suk Oh
  • Publication number: 20150084672
    Abstract: An integrated circuit device transmits to a dynamic random access memory (DRAM) one or more commands that specify programming of a digital control value within the DRAM, the digital control value indicating a termination impedance that the DRAM is to couple to a data interface of the DRAM in response to receiving a write command and during reception of write data corresponding to the write command, and that the DRAM is to decouple from the data interface after reception of the write data corresponding to the write command. Thereafter, the integrated circuit device transmits to the DRAM a write command indicating that write data is to be sampled by a data interface of the DRAM during a first time interval and that cause the DRAM to couple the termination impedance to the data interface during the first time interval and decouple the termination impedance from the data interface after the first time interval.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventors: Kyung Suk Oh, Ian P. Shaeffer
  • Patent number: 8981811
    Abstract: An integrated circuit memory device stores a plurality of digital values that specify respective termination impedances. The memory device switchably couples respective sets of load elements to a data input/output (I/O) to apply the termination impedances specified by the digital values, including, applying a first termination impedance to the data I/O during an idle state of the memory device, applying a first one of two non-equal termination impedances to the data I/O while the memory device receives write data in a memory write operation and applying a second one of the two non-equal termination impedances to the data I/O while another memory device receives write data in a memory write operation. When outputting read data via the data I/O in a memory read operation, the memory device switchably couples to the data I/O at least a portion of the load elements included in the sets of load elements.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: March 17, 2015
    Assignee: Rambus Inc.
    Inventors: Kyung Suk Oh, Ian P. Shaeffer
  • Publication number: 20150042378
    Abstract: In a memory module having an integrated-circuit buffer device coupled to one or more integrated-circuit memory devices, the buffer device receives write data signals from an external control component via a set of data inputs, the write data signals indicating write data to be stored within one or more of the memory devices. Logic within the buffer device sequentially applies controllable termination impedance configurations at the data inputs based on an indication received from the control component and an internal state of the buffer device, applying a first controllable termination impedance configuration at each of the data inputs during a first internal state of the buffer device corresponding to the reception of the write data signals on the data inputs, and applying a second controllable termination impedance configuration at each of the data inputs during a second internal state of the buffer device that succeeds the first internal state.
    Type: Application
    Filed: October 26, 2014
    Publication date: February 12, 2015
    Inventors: Kyung Suk Oh, Ian P. Shaeffer
  • Patent number: 8947962
    Abstract: A memory controller is disclosed. The memory controller is configured to be connected to one or more memory devices via an address and control (RQ) bus. Each of the memory devices have on-die termination (ODT) circuitry connected to a subset of signal lines of the RQ bus, and the memory controller is operable to selectively disable the ODT circuitry in at least one memory device of the one or more memory devices.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: February 3, 2015
    Assignee: Rambus Inc.
    Inventors: Ian Shaeffer, Kyung Suk Oh
  • Patent number: 8922245
    Abstract: In an asymmetrically terminated communication system, the power consumed to transmit a particular bit value is adjusted based on whether the bit being output is the second, third, fourth, etc. consecutive bit with the same value after a transition to output the particular bit value. The adjustment of the power consumed to transmit the two or more consecutive bits with the same value may be made by adjusting the driver strength during the second, or subsequent, consecutive bits with the same value. The adjustment of the power consumed is performed on the bit value that consumes the most DC power and the other value is typically not adjusted.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: December 30, 2014
    Assignee: Rambus Inc.
    Inventors: Kyung Suk Oh, Chi-Ming Yeung, David A. Secker
  • Publication number: 20140374877
    Abstract: An integrated circuit includes a decoupling capacitor and an internal circuit. The decoupling capacitor is coupled to a first external terminal of the integrated circuit. The internal circuit in the integrated circuit is coupled to a second external terminal of the integrated circuit. The decoupling capacitor is coupled to provide supply voltage current to the internal circuit through the first and the second external terminals and through external conductors. The external conductors are outside the integrated circuit.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Applicant: Altera Corporation
    Inventors: Kyung Suk Oh, Bonnie Wang, Hong Shi, Hui Liu, Sergey Shumarayev, Sunitha Chandra, Weiqi Ding, Kundan Chand
  • Patent number: 8878592
    Abstract: A data signal is transmitted from a first circuit to a second circuit, with noise and/or jitter added to the data signal by supply noise in the power distribution network in the first circuit and/or a second circuit being effectively canceled out by adjustment of the reference voltage and/or the phase of the sampling clock used for sampling of the data signal in a manner that effectively mimics such noise and/or jitter added to the data signal. The second circuit uses a filter that has the impedance profile and/or the jitter profile of such power distribution network. The bus weight and/or the number of switching bits in the data pattern transmitted from the first circuit to the second circuit is applied to the filter to determine the adjustment to be made to the reference voltage or the phase of the sampling clock.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 4, 2014
    Assignee: Rambus Inc.
    Inventor: Kyung Suk Oh
  • Publication number: 20140285232
    Abstract: Described is a communication system in a first integrated circuit (IC) communicates with a second IC via single-ended communication channels. A bidirectional reference channel extends between the first and second ICs and is terminated on both ends. The termination impedances at each end of the reference channel support different modes for communicating signals in different directions. The termination impedances for the reference channel can be optimized for each signaling direction.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 25, 2014
    Applicant: Rambus Inc.
    Inventor: Kyung Suk Oh
  • Patent number: 8836384
    Abstract: Systems and methods are provided for reducing jitter due to power supply noise in an integrated circuit by drawing additional current. The additional current causes the total current to generally have a frequency higher than a resonant frequency of the integrated circuit and/or a power distribution network of the integrated circuit. In one example, a power distribution network may supply power to components of an integrated circuit and data driver circuitry may draw first current to drive a data signal. Compensation circuitry may draw second current at times when the data driver circuitry is not drawing the first current, thereby causing a net of the first and second current to be higher than a resonant frequency range of the integrated circuit device and/or a component of the integrated circuit device (e.g., the power distribution network).
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: September 16, 2014
    Assignee: Altera Corporation
    Inventors: Kyung Suk Oh, Yujeong Shim, Tim Tri Hoang, Weiqi Ding, Sunitha Chandra
  • Publication number: 20140258768
    Abstract: Disclosed embodiments relate to a system that changes transmitter and/or receiver settings to deal with reliability issues caused by a predetermined event, such as a change in a power state or a clock start event. One embodiment uses a first setting while operating a transmitter during a normal operating mode, and a second setting while operating the transmitter during a transient period following the predetermined event. A second embodiment uses similar first and second settings in a receiver, or in both a transmitter and a receiver employed on one side of a bidirectional link The first and second settings can be associated with different swing voltages, edge rates, equalizations and/or impedances.
    Type: Application
    Filed: October 11, 2012
    Publication date: September 11, 2014
    Inventors: Yu Chang, Lei Luo, Kyung Suk Oh
  • Publication number: 20140169438
    Abstract: A receiver is equipped with an adaptive phase-offset controller and associated timing-calibration circuitry that together shift the timing for a data sampler and a digital equalizer. The sample and equalizer timing is shifted to a position with less residual inter-symbol interference (ISI) energy relative to the current symbol. The shifted position may be calculated using a measure of signal quality, such as a receiver bit-error rate or a comparison of filter-tap values, to optimize the timing of data recovery.
    Type: Application
    Filed: August 29, 2013
    Publication date: June 19, 2014
    Applicant: Rambus Inc.
    Inventors: Qi Lin, Brian Leibowitz, Hae-Chang Lee, Jihong Ren, Kyung Suk Oh, Jared L. Zerbe
  • Publication number: 20140112084
    Abstract: A memory controller is disclosed. The memory controller is configured to be connected to one or more memory devices via an address and control (RQ) bus. Each of the memory devices have on-die termination (ODT) circuitry connected to a subset of signal lines of the RQ bus, and the memory controller is operable to selectively disable the ODT circuitry in at least one memory device of the one or more memory devices.
    Type: Application
    Filed: November 22, 2013
    Publication date: April 24, 2014
    Applicant: Rambus Inc.
    Inventors: Ian Shaeffer, Kyung Suk Oh
  • Patent number: 8692573
    Abstract: Embodiments of a memory controller are described. This memory controller communicates signals to a memory device via a signal line, which can be a data signal line or a command/address signal line. Termination of the signal line is divided between an external impedance outside of the memory controller and an internal impedance within the memory controller. The memory controller does not activate the external impedance prior to communicating the signals and, therefore, does not deactivate the external impedance after communicating the signals. The internal impedance of the memory controller can be enabled or disabled in order to reduce interface power consumption. Moreover, the internal impedance may be implemented using a passive component, an active component or both. For example, the internal impedance may include either or both an on-die termination and at least one driver.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: April 8, 2014
    Assignee: Rambus Inc.
    Inventors: Kyung Suk Oh, Woopoung Kim, Huy M. Nguyen, Eugene C. Ho