Patents by Inventor L. Paivikki Buchwalter

L. Paivikki Buchwalter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7581314
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: September 1, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John M. Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John H. Magerlein, Kenneth Stein, Richard P. Volant, James A. Tornello, Jennifer Lund
  • Publication number: 20080179755
    Abstract: A process and structure for enabling the creation of reliable electrical through-via connections in a semiconductor substrate and a process for filling vias. Problems associated with under etch, over etch and flaring of deep Si RIE etched through-vias are mitigated, thereby vastly improving the integrity of the insulation and metallization layers used to convert the through-vias into highly conductive pathways across the Si wafer thickness. By using an insulating collar structure in the substrate in one case and by filling the via in accordance with the invention in another case, whole wafer yield of electrically conductive through vias is greatly enhanced.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Paul S. Andry, L. Paivikki Buchwalter, Anurag Jain, John U. Knickerbocker, Edmund J. Sprogis, Michelle L. Steen, Cornelia K. Tsang
  • Patent number: 7212091
    Abstract: A microelectromechanical switch including: at least one pair of actuator electrodes; at least one input electrode and at least one output electrode for input and output, respectively, of a radio frequency signal; and a beam movable by an attraction between the at least one pair of actuator electrodes, the movable beam having at least a portion electrically connected to the at least one input electrode and to the at least one output electrode when moved by the attraction between the at least one pair of actuator electrodes to make an electrical connection between the at least one input and output electrodes; wherein the at least one pair of actuator electrodes are electrically isolated from each of the at least one input and output electrodes. The microelectromechanical switch can be configured in single or multiple-poles and/or single or multiple throws.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: May 1, 2007
    Assignee: International Business Machines Coproration
    Inventors: Panayotis Constantinou Andricacos, L. Paivikki Buchwalter, Hariklia Deligianni, Robert A. Groves, Christopher Jahnes, Jennifer L. Lund, Michael Meixner, David Earle Seeger, Timothy D. Sullivan, Ping-Chuan Wang
  • Patent number: 7202764
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: April 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John M. Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John H. Magerlein, Kenneth Stein, Richard P. Volant, James A. Tornello, Jennifer Lund
  • Publication number: 20060164194
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Application
    Filed: February 21, 2006
    Publication date: July 27, 2006
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John Magerlein, Kenneth Stein, Richard Volant, James Tornello, Jennifer Lund
  • Patent number: 6876282
    Abstract: A microelectromechanical switch including: at least one pair of actuator electrodes; at least one input electrode and at least one output electrode for input and output, respectively, of a radio frequency signal; and a beam movable by an attraction between the at least one pair of actuator electrodes, the movable beam having at least a portion electrically connected to the at least one input electrode and to the at least one output electrode when moved by the attraction between the at least one pair of actuator electrodes to make an electrical connection between the at least one input and output electrodes; wherein the at least one pair of actuator electrodes are electrically isolated from each of the at least one input and output electrodes. The microelectromechanical switch can be configured in single or multiple-poles and/or single or multiple throws.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: April 5, 2005
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Constantinou Andricacos, L. Paivikki Buchwalter, Hariklia Deligianni, Robert A. Groves, Christopher Jahnes, Jennifer L. Lund, Michael Meixner, David Earle Seeger, Timothy D. Sullivan, Ping-Chuan Wang
  • Publication number: 20030214373
    Abstract: A microelectromechanical switch including: at least one pair of actuator electrodes; at least one input electrode and at least one output electrode for input and output, respectively, of a radio frequency signal; and a beam movable by an attraction between the at least one pair of actuator electrodes, the movable beam having at least a portion electrically connected to the at least one input electrode and to the at least one output electrode when moved by the attraction between the at least one pair of actuator electrodes to make an electrical connection between the at least one input and output electrodes; wherein the at least one pair of actuator electrodes are electrically isolated from each of the at least one input and output electrodes. The microelectromechanical switch can be configured in single or multiple-poles and/or single or multiple throws.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 20, 2003
    Inventors: Panayotis Constantinou Andricacos, L. Paivikki Buchwalter, Hariklia Deligianni, Robert A. Groves, Christopher Jahnes, Jennifer L. Lund, Michael Meixner, David Earle Seeger, Timothy D. Sullivan, Ping-Chuan Wang
  • Patent number: 6639488
    Abstract: Disclosed is a capacitive electrostatic MEMS RF switch comprised of a lower electrode that acts as both a transmission line and as an actuation electrode. Also, there is an array of one or more fixed beams above the lower electrode that is connected to ground. The lower electrode transmits the RF signal when the top beam or beams are up and when the upper beams are actuated and bent down, the transmission line is shunted to ground ending the RF transmission. A high dielectric constant material is used in the capacitive portion of the switch to achieve a high capacitance per unit area thus reducing the required chip area and enhancing the insertion loss characteristics in the non-actuated state. A gap between beam and lower electrode of less than 1 &mgr;m is incorporated in order to minimize the electrostatic potential (pull-in voltage) required to actuate the switch.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: October 28, 2003
    Assignee: IBM Corporation
    Inventors: Hariklia Deligianni, Robert Groves, Christopher Jahnes, Jennifer L. Lund, Panayotis Andricacos, John Cotte, L. Paivikki Buchwalter, David Seeger, Raul E. Acosta
  • Publication number: 20030048149
    Abstract: Disclosed is a capacitive electrostatic MEMS RF switch comprised of a lower electrode that acts as both a transmission line and as an actuation electrode. Also, there is an array of one or more fixed beams above the lower electrode that is connected to ground. The lower electrode transmits the RF signal when the top beam or beams are up and when the upper beams are actuated and bent down, the transmission line is shunted to ground ending the RF transmission. A high dielectric constant material is used in the capacitive portion of the switch to achieve a high capacitance per unit area thus reducing the required chip area and enhancing the insertion loss characteristics in the non-actuated state. A gap between beam and lower electrode of less than 1 &mgr;m is incorporated in order to minimize the electrostatic potential (pull-in voltage) required to actuate the switch.
    Type: Application
    Filed: September 7, 2001
    Publication date: March 13, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Robert Groves, Christopher Jahnes, Jennifer L. Lund, Panayotis Andricacos, John Cotte, L. Paivikki Buchwalter, David Seeger, Raul E. Acosta
  • Patent number: 6372081
    Abstract: A process for removing material from a substrate. The material is exposed to an aqueous solution comprising about 4% to about 30% of at least one acid and at least one surfactant.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: April 16, 2002
    Assignee: International Business Machines Corporation
    Inventors: Cyprian E. Uzoh, L. Paivikki Buchwalter