Patents by Inventor Laird Berry Thompson

Laird Berry Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220136382
    Abstract: Provided are methods of locating a well bore to optimize fluid extraction from a region of interest. In this manner, well production may be better predicted without having to go through the time and effort of drilling exploratory-type wells. The methods analyze semblance values of voxels within a full activity volume, and identify near well activity (NWA) voxels based on voxels that exceed the mean semblance value by a cut-off value. For example, the cut-off value may correspond to one or two standard deviations greater than the mean semblance value. Optimal fluid recovery corresponds to a well bore location at or near the putative location corresponding to the maximum number of NWA voxels in the region of interest.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 5, 2022
    Inventors: Peter GEISER, Laird Berry Thompson, Jan Meredith Vermilye
  • Patent number: 9810803
    Abstract: The invention comprises a method for mapping a volume of the Earth's subsurface encompassing a selected path within said volume, comprising dividing the volume of the Earth's subsurface into a three-dimensional grid of voxels and transforming detected seismic signals representing seismic energy originating from said volume of the Earth's subsurface when no induced fracturing activity is occurring along said selected path and conducted to a recording unit for recording into signals representing energy originating from the voxels included in said grid of voxels, and utilizing said transformed seismic signals to estimate spatially continuous flow paths for reservoir fluids through said volume of the Earth's subsurface to said selected path.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: November 7, 2017
    Assignee: Seismic Global Ambient, LLC
    Inventors: Jan Meredith Vermilye, Charles John Sicking, Ross G. Peebles, Laird Berry Thompson, Amanda Jean Klaus, Peter Anderson Geiser
  • Publication number: 20140288840
    Abstract: The invention comprises a method for mapping a volume of the Earth's subsurface encompassing a selected path within said volume, comprising dividing the volume of the Earth's subsurface into a three-dimensional grid of voxels and transforming detected seismic signals representing seismic energy originating from said volume of the Earth's subsurface when no induced fracturing activity is occurring along said selected path and conducted to a recording unit for recording into signals representing energy originating from the voxels included in said grid of voxels, and utilizing said transformed seismic signals to estimate spatially continuous flow paths for reservoir fluids through said volume of the Earth's subsurface to said selected path.
    Type: Application
    Filed: June 5, 2014
    Publication date: September 25, 2014
    Applicant: Global Microseismic Services, Inc.
    Inventors: Jan Meredith Vermilye, Charles John Sicking, Ross G. Peebles, Laird Berry Thompson, Amanda Jean Klaus, Peter Anderson Geiser
  • Patent number: 5929342
    Abstract: Multi-phase fluid flow in a pipeline or other flowline is monitored using a combination of flow type detectors. One set of detectors monitors the interfaces between fluid interfaces and the other monitors the presence of different fluid phases around the periphery of the flowline. The relative volumetric fluid flow rates can be measured by detecting changes in the phase interfaces between two sets of sensor rings using sensors spaced around the flowline with the fluid flow type being detected across the flowline with an annular capacitance detector. The sensor rings typically use ultrasonic transducers for detecting the phase interfaces while the capacitance device indicates the presence (or absence) of different phases around the periphery of the flowline. By combining the outputs of the different detectors, an indication of the flow phenomena in the flowline can be obtained.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: July 27, 1999
    Assignee: Mobil Oil Corporation
    Inventor: Laird Berry Thompson