Patents by Inventor Lance Wright

Lance Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9608158
    Abstract: A method for fabricating a semiconductor proximity sensor includes providing a flat leadframe with a first and a second surface. The second surface is solderable. The leadframe includes a first and a second pad, a plurality of leads, and fingers framing the first pad. The fingers are spaced from the first pad by a gap which is filled with a clear molding compound. A light-emitting diode (LED) chip is assembled on the first pad and encapsulated by a first volume of the clear compound. The first volume outlined as a first lens. A sensor chip is assembled on the second pad and encapsulated by a second volume of the clear compound. The second volume outlined as a second lens. Opaque molding compound fills the space between the first and second volumes of clear compound and forms walls rising from the frame of fingers to create an enclosed cavity for the LED. The pads, leads, and fingers connected to a board using a layer of solder for attaching the proximity sensor.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Andy Quang Tran, Lance Wright
  • Publication number: 20170047469
    Abstract: A method for fabricating a semiconductor proximity sensor includes providing a flat leadframe with a first and a second surface. The second surface is solderable. The leadframe includes a first and a second pad, a plurality of leads, and fingers framing the first pad. The fingers are spaced from the first pad by a gap which is filled with a clear molding compound. A light-emitting diode (LED) chip is assembled on the first pad and encapsulated by a first volume of the clear compound. The first volume outlined as a first lens. A sensor chip is assembled on the second pad and encapsulated by a second volume of the clear compound. The second volume outlined as a second lens. Opaque molding compound fills the space between the first and second volumes of clear compound and forms walls rising from the frame of fingers to create an enclosed cavity for the LED. The pads, leads, and fingers connected to a board using a layer of solder for attaching the proximity sensor.
    Type: Application
    Filed: October 27, 2016
    Publication date: February 16, 2017
    Inventors: Andy Quang Tran, Lance Wright
  • Patent number: 9515059
    Abstract: A method for fabricating a semiconductor proximity sensor includes providing a flat leadframe with a first and a second surface. The second surface is solderable. The leadframe includes a first and a second pad, a plurality of leads, and fingers framing the first pad. The fingers are spaced from the first pad by a gap which is filled with a clear molding compound. A light-emitting diode (LED) chip is assembled on the first pad and encapsulated by a first volume of the clear compound. The first volume outlined as a first lens. A sensor chip is assembled on the second pad and encapsulated by a second volume of the clear compound. The second volume outlined as a second lens. Opaque molding compound fills the space between the first and second volumes of clear compound and forms walls rising from the frame of fingers to create an enclosed cavity for the LED. The pads, leads, and fingers connected to a board using a layer of solder for attaching the proximity sensor.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: December 6, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Andy Quang Tran, Lance Wright
  • Publication number: 20160043064
    Abstract: A method for fabricating a semiconductor proximity sensor includes providing a flat leadframe with a first and a second surface. The second surface is solderable. The leadframe includes a first and a second pad, a plurality of leads, and fingers framing the first pad. The fingers are spaced from the first pad by a gap which is filled with a clear molding compound. A light-emitting diode (LED) chip is assembled on the first pad and encapsulated by a first volume of the clear compound. The first volume outlined as a first lens. A sensor chip is assembled on the second pad and encapsulated by a second volume of the clear compound. The second volume outlined as a second lens. Opaque molding compound fills the space between the first and second volumes of clear compound and forms walls rising from the frame of fingers to create an enclosed cavity for the LED. The pads, leads, and fingers connected to a board using a layer of solder for attaching the proximity sensor.
    Type: Application
    Filed: October 26, 2015
    Publication date: February 11, 2016
    Inventors: Andy Quang Tran, Lance Wright
  • Patent number: 9171830
    Abstract: A method for fabricating a semiconductor proximity sensor includes providing a flat leadframe with a first and a second surface. The second surface is solderable. The leadframe includes a first and a second pad, a plurality of leads, and fingers framing the first pad. The fingers are spaced from the first pad by a gap which is filled with a clear molding compound. A light-emitting diode (LED) chip is assembled on the first pad and encapsulated by a first volume of the clear compound. The first volume outlined as a first lens. A sensor chip is assembled on the second pad and encapsulated by a second volume of the clear compound. The second volume outlined as a second lens. Opaque molding compound fills the space between the first and second volumes of clear compound, forms shutters for the first and second lenses, and forms walls rising from the frame of fingers to create an enclosed cavity for the LED.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: October 27, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Andy Quang Tran, Lance Wright
  • Publication number: 20150162317
    Abstract: A method for fabricating a semiconductor proximity sensor includes providing a flat leadframe with a first and a second surface. The second surface is solderable. The leadframe includes a first and a second pad, a plurality of leads, and fingers framing the first pad. The fingers are spaced from the first pad by a gap which is filled with a clear molding compound. A light-emitting diode (LED) chip is assembled on the first pad and encapsulated by a first volume of the clear compound. The first volume outlined as a first lens. A sensor chip is assembled on the second pad and encapsulated by a second volume of the clear compound. The second volume outlined as a second lens. Opaque molding compound fills the space between the first and second volumes of clear compound, forms shutters for the first and second lenses, and forms walls rising from the frame of fingers to create an enclosed cavity for the LED.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 11, 2015
    Inventors: Andy Quang Tran, Lance Wright
  • Patent number: 8994154
    Abstract: A semiconductor proximity sensor (100) has a flat leadframe (110) with a first (110a) and a second (110b) surface, the second surface being solderable; the leadframe includes a first (111) and a second (112) pad, a plurality of leads (113, 114), and fingers (115, 118) framing the first pad, the fingers spaced from the first pad by a gap (116) which is filled with a clear molding compound. A light-emitting diode (LED) chip (120) is assembled on the first pad and encapsulated by a first volume (140) of the clear compound, the first volume outlined as a first lens (141). A sensor chip (130) is assembled on the second pad and encapsulated by a second volume (145) of the clear compound, the second volume outlined as a second lens (146). Opaque molding compound (150) fills the space between the first and second volumes of clear compound, forms shutters (151) for the first and second lenses, and forms walls rising from the frame of fingers to create an enclosed cavity for the LED.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: March 31, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Andy Quang Tran, Lance Wright
  • Publication number: 20140091326
    Abstract: A semiconductor proximity sensor (100) has a flat leadframe (110) with a first (110a) and a second (110b) surface, the second surface being solderable; the leadframe includes a first (111) and a second (112) pad, a plurality of leads (113, 114), and fingers (115, 118) framing the first pad, the fingers spaced from the first pad by a gap (116) which is filled with a clear molding compound. A light-emitting diode (LED) chip (120) is assembled on the first pad and encapsulated by a first volume (140) of the clear compound, the first volume outlined as a first lens (141). A sensor chip (130) is assembled on the second pad and encapsulated by a second volume (145) of the clear compound, the second volume outlined as a second lens (146). Opaque molding compound (150) fills the space between the first and second volumes of clear compound, forms shutters (151) for the first and second lenses, and forms walls rising from the frame of fingers to create an enclosed cavity for the LED.
    Type: Application
    Filed: July 30, 2013
    Publication date: April 3, 2014
    Inventors: Andy Quang Tran, Lance Wright
  • Patent number: 8304871
    Abstract: A packaged semiconductor device includes a semiconductor die including a substrate having a topside including active circuitry and a bottomside with at least one backside metal layer directly attached. A package including a molding material having a die pad and a plurality of leads is encapsulated within the molding material, wherein the leads include an exposed portion that includes a bonding portion. The topside of the semiconductor die is attached to the die pad, and the package includes a gap that exposes the backside metal layer along a bottom surface of the package. Bond wires couple pads on the topside of the semiconductor die to the leads. The bonding portions, the molding material along the bottom surface of the package, and the backside metal layer are all substantially planar to one another.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Frank Yu, Lance Wright, Chien-Te Feng, Sandra Horton
  • Publication number: 20120256306
    Abstract: A packaged semiconductor device includes a semiconductor die including a substrate having a topside including active circuitry and a bottomside with at least one backside metal layer directly attached. A package including a molding material having a die pad and a plurality of leads is encapsulated within the molding material, wherein the leads include an exposed portion that includes a bonding portion. The topside of the semiconductor die is attached to the die pad, and the package includes a gap that exposes the backside metal layer along a bottom surface of the package. Bond wires couple pads on the topside of the semiconductor die to the leads. The bonding portions, the molding material along the bottom surface of the package, and the backside metal layer are all substantially planar to one another.
    Type: Application
    Filed: April 5, 2011
    Publication date: October 11, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: FRANK YU, LANCE WRIGHT, CHIEN-TE FENG, SANDRA HORTON
  • Publication number: 20060170080
    Abstract: An apparatus consisting of a leadframe (301) and a metallic heat spreader (310). The leadframe, made of a planar metal sheet, includes a plurality of non-coplanar members (312) operable as mechanical couplers configured to grip inserted objects. The heat spreader has a central pad (310) suitable for mounting a heat-generating object, and a plurality of handles (312) in locations to match the members; the handles are coupled with the members. One member end is formed as a clamp having projections from the planar sheet, operable to grip one of the handles, when it is inserted into the coupler, and also has a bend so that the plane of the heat spreader, after insertion of its handles into the clamps, is spaced from the plane of the leadframe. A gap is thus created between the spreader and the first leadframe segment ends.
    Type: Application
    Filed: February 3, 2005
    Publication date: August 3, 2006
    Inventors: Edgar Zuniga-Ortiz, Richard Saye, Lance Wright
  • Publication number: 20060055026
    Abstract: A carrier and package for plural semiconductor devices includes a member with device-conformal apertures therethrough. A first removable cover is attached to one side of the member to close one end of each aperture. After devices are inserted into the apertures with their first ends “up” and their second ends “down,” a second removable cover is attached to the other side of the member to close the other end of each aperture. After inverting the assembly, removal of the first cover presents the devices in the apertures with their second ends “up” and their first ends “down.
    Type: Application
    Filed: November 1, 2005
    Publication date: March 16, 2006
    Inventor: Lance Wright
  • Publication number: 20050073037
    Abstract: A method for packing a semiconductor device 301 in a carrier tape 406 without damage to the leads 302 includes an interlocking mechanism between the molded semiconductor device with indentations 305 formed into the package body, and the carrier tape having mating protrusions 407 slightly smaller than the indentations which cause the device to be held securely without significant movement after a cover tape 409 is adhered to the carrier tape. The features of correctly sized pockets and pedestals, the cover tape, and the interlocking device indentations and tape protrusions prevent damage to the device leads as a result of impact.
    Type: Application
    Filed: October 2, 2003
    Publication date: April 7, 2005
    Inventors: Lance Wright, Albert Escusa
  • Publication number: 20040227216
    Abstract: Disclosed are flex resistant die pads (18), leadframes (16), and high aspect ratio semiconductor packages (10) using the same. Methods for making devices (10, 16, and 18) according to the invention are also disclosed. Preferred embodiments of the invention are described in which tie bars (24) extending outward from the attachment region (20) of a die pad (18) are used to increase flex resistance of die pads (18), leadframes (16), and packages (10).
    Type: Application
    Filed: February 2, 2004
    Publication date: November 18, 2004
    Inventors: Robert F. Mortan, Lance Wright, Edgar R. Zuniga