Patents by Inventor Lang Hong

Lang Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210389416
    Abstract: A system for radar interference mitigation, preferably including one or more transmitter arrays, receiver arrays, and/or signal processors, and optionally including one or more velocity sensing modules. A method for radar interference mitigation, preferably including transmitting a set of probe signals, receiving a set of reflected probe signals, and/or evaluating interference, and optionally including decoding the set of received probe signals and/or compensating for interference.
    Type: Application
    Filed: May 18, 2021
    Publication date: December 16, 2021
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20210293944
    Abstract: A system for virtual aperture array radar tracking includes a transmitter that transmits first and second probe signals; a receiver array including a first plurality of radar elements positioned along a first radar axis; and a signal processor that calculates a target range from first and second reflected probe signals, corresponds signal instances of the first reflected probe signal to physical receiver elements of the radar array, corresponds signal instances of the second reflected probe signal to virtual elements of the radar array, calculates a first target angle between a first reference vector and a first projected target vector from the first reflected probe signal, and calculates a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Lang Hong, Steven Hong
  • Patent number: 11105910
    Abstract: A system for virtual aperture array radar tracking includes a transmitter that transmits first and second probe signals; a receiver array including a first plurality of radar elements positioned along a first radar axis; and a signal processor that calculates a target range from first and second reflected probe signals, corresponds signal instances of the first reflected probe signal to physical receiver elements of the radar array, corresponds signal instances of the second reflected probe signal to virtual elements of the radar array, calculates a first target angle between a first reference vector and a first projected target vector from the first reflected probe signal, and calculates a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: August 31, 2021
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20210255306
    Abstract: A method for interpolated virtual aperture array radar tracking includes: transmitting first and second probe signals; receiving a first reflected probe signal at a radar array; receiving a second reflected probe signal at the radar array; calculating a target range from at least one of the first and second reflected probe signals; corresponding signal instances of the first reflected probe signal to physical receiver elements of the radar array; corresponding signal instances of the second reflected probe signal to virtual elements of the radar array; interpolating signal instances; calculating a first target angle; and calculating a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Application
    Filed: December 5, 2019
    Publication date: August 19, 2021
    Inventors: Lang Hong, Steven Hong
  • Patent number: 11047974
    Abstract: A system for virtual Doppler and/or aperture enhancement, preferably including one or more transmitter arrays, receiver arrays, and/or signal processors, and optionally including one or more velocity sensing modules. A method for virtual Doppler and/or aperture enhancement, preferably including transmitting a set of probe signals, receiving a set of reflected probe signals, and/or analyzing the set of received probe signals.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: June 29, 2021
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20210190906
    Abstract: A system for phase-modulated radar detection, preferably including one or more transmitter arrays, receiver arrays, and signal processors. A method for phase-modulated radar detection, preferably including transmitting a set of probe signals, receiving a set of reflected probe signals, and/or decoding the set of received probe signals, and optionally including evaluating effects of phase variance and/or modifying probe signal characteristics.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 24, 2021
    Inventors: Lang Hong, Steven Hong
  • Patent number: 11041940
    Abstract: A system for phase-modulated radar detection, preferably including one or more transmitter arrays, receiver arrays, and signal processors. A method for phase-modulated radar detection, preferably including transmitting a set of probe signals, receiving a set of reflected probe signals, and/or decoding the set of received probe signals, and optionally including evaluating effects of phase variance and/or modifying probe signal characteristics.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: June 22, 2021
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20210181330
    Abstract: A system for virtual Doppler and/or aperture enhancement, preferably including one or more transmitter arrays, receiver arrays, and/or signal processors, and optionally including one or more velocity sensing modules. A method for virtual Doppler and/or aperture enhancement, preferably including transmitting a set of probe signals, receiving a set of reflected probe signals, and/or analyzing the set of received probe signals.
    Type: Application
    Filed: December 10, 2020
    Publication date: June 17, 2021
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20200209381
    Abstract: A method for Doppler-enhanced radar tracking includes: receiving a reflected probe signal at a radar array; calculating a target range from the reflected probe signal; calculating a first target angle from the reflected probe signal; calculating a target composite angle from the reflected probe signal; and calculating a three-dimensional position of the tracking target relative to the radar array from the target range, first target angle, and target composite angle.
    Type: Application
    Filed: February 25, 2020
    Publication date: July 2, 2020
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10613212
    Abstract: A method for Doppler-enhanced radar tracking includes: receiving a reflected probe signal at a radar array; calculating a target range from the reflected probe signal; calculating a first target angle from the reflected probe signal; calculating a target composite angle from the reflected probe signal; and calculating a three-dimensional position of the tracking target relative to the radar array from the target range, first target angle, and target composite angle.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: April 7, 2020
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20200064462
    Abstract: A system for virtual aperture array radar tracking includes a transmitter that transmits first and second probe signals; a receiver array including a first plurality of radar elements positioned along a first radar axis; and a signal processor that calculates a target range from first and second reflected probe signals, corresponds signal instances of the first reflected probe signal to physical receiver elements of the radar array, corresponds signal instances of the second reflected probe signal to virtual elements of the radar array, calculates a first target angle between a first reference vector and a first projected target vector from the first reflected probe signal, and calculates a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Application
    Filed: October 31, 2019
    Publication date: February 27, 2020
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10564277
    Abstract: A method for interpolated virtual aperture array radar tracking includes: transmitting first and second probe signals; receiving a first reflected probe signal at a radar array; receiving a second reflected probe signal at the radar array; calculating a target range from at least one of the first and second reflected probe signals; corresponding signal instances of the first reflected probe signal to physical receiver elements of the radar array; corresponding signal instances of the second reflected probe signal to virtual elements of the radar array; interpolating signal instances; calculating a first target angle; and calculating a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Grant
    Filed: July 5, 2019
    Date of Patent: February 18, 2020
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10509119
    Abstract: A system for virtual aperture array radar tracking includes a transmitter that transmits first and second probe signals; a receiver array including a first plurality of radar elements positioned along a first radar axis; and a signal processor that calculates a target range from first and second reflected probe signals, corresponds signal instances of the first reflected probe signal to physical receiver elements of the radar array, corresponds signal instances of the second reflected probe signal to virtual elements of the radar array, calculates a first target angle between a first reference vector and a first projected target vector from the first reflected probe signal, and calculates a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 17, 2019
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20190324133
    Abstract: A method for interpolated virtual aperture array radar tracking includes: transmitting first and second probe signals; receiving a first reflected probe signal at a radar array; receiving a second reflected probe signal at the radar array; calculating a target range from at least one of the first and second reflected probe signals; corresponding signal instances of the first reflected probe signal to physical receiver elements of the radar array; corresponding signal instances of the second reflected probe signal to virtual elements of the radar array; interpolating signal instances; calculating a first target angle; and calculating a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Application
    Filed: July 5, 2019
    Publication date: October 24, 2019
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10386462
    Abstract: A method for non-coherent stereo radar tracking includes, at a stereo radar system, transmitting a probe signal, receiving a reflected probe signal in response to reflection of the probe signal by a tracking target, calculating first and second target ranges from the reflected probe signal data, transforming the reflected probe signal data based on the first and second target ranges, and calculating a first target angle from the transformed reflected probe signal data.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 20, 2019
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20190235068
    Abstract: A system for virtual aperture array radar tracking includes a transmitter that transmits first and second probe signals; a receiver array including a first plurality of radar elements positioned along a first radar axis; and a signal processor that calculates a target range from first and second reflected probe signals, corresponds signal instances of the first reflected probe signal to physical receiver elements of the radar array, corresponds signal instances of the second reflected probe signal to virtual elements of the radar array, calculates a first target angle between a first reference vector and a first projected target vector from the first reflected probe signal, and calculates a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Application
    Filed: July 11, 2018
    Publication date: August 1, 2019
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10359512
    Abstract: A method for coherent stereo radar tracking includes, at a stereo radar system, transmitting a probe signal, receiving a reflected probe signal in response to reflection of the probe signal by a tracking target, calculating first and second target ranges from the reflected probe signal data, transforming the reflected probe signal data based on the first and second target ranges, and calculating a first target angle from the transformed reflected probe signal data.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: July 23, 2019
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10222463
    Abstract: A method for four-dimensional radar tracking includes transmitting a first probe signal; receiving a first reflected probe signal at first and second radar arrays of the radar system; detecting a tracking target; calculating a target range; calculating a target range rate; performing ambiguous angle calculations for first and second target angles; performing unambiguous angle calculations for the first and second target angles; and calculating a four-dimensional tracking solution, including position and range-rate, from the target range, target range-rate, ambiguous angle calculations, and unambiguous angle calculations.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: March 5, 2019
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Publication number: 20190049572
    Abstract: A method for Doppler-enhanced radar tracking includes: receiving a reflected probe signal at a radar array; calculating a target range from the reflected probe signal; calculating a first target angle from the reflected probe signal; calculating a target composite angle from the reflected probe signal; and calculating a three-dimensional position of the tracking target relative to the radar array from the target range, first target angle, and target composite angle.
    Type: Application
    Filed: August 14, 2017
    Publication date: February 14, 2019
    Inventors: Lang Hong, Steven Hong
  • Patent number: 10048366
    Abstract: A method for virtual aperture array radar tracking includes: transmitting first and second probe signals; receiving a first reflected probe signal at a radar array; receiving a second reflected probe signal at the radar array; calculating a target range from at least one of the first and second reflected probe signals; corresponding signal instances of the first reflected probe signal to physical receiver elements of the radar array; corresponding signal instances of the second reflected probe signal to virtual elements of the radar array; calculating a first target angle by performing beamforming from the signal instances of the first and second reflected probe signals; and calculating a position of the tracking target relative to the radar array from the target range and first target angle.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: August 14, 2018
    Assignee: Oculii Corp
    Inventors: Lang Hong, Steven Hong