Patents by Inventor Larry Baxter

Larry Baxter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190162475
    Abstract: Devices, systems, and methods for melting solids are disclosed. A vessel includes a solids inlet, a plunger, one or more fluid jets, and a fluid outlet. Solids are passed through the solids inlet into the vessel. The plunger is positioned adjacent to the solids inlet to provide a variable gap between the plunger and the solids inlet. The variable gap provides a restriction producing a back pressure at the solids inlet. Hot fluid is injected into the vessel by fluid jets. The one or more fluid jets enter the vessel and end adjacent to the variable gap. The hot fluid melts at least a portion of the solids.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 30, 2019
    Inventors: Larry Baxter, Skyler Chamberlain, Kyler Stitt, Eric Mansfield, Christopher Hoeger, Aaron Sayre, David Frankman, Nathan Davis
  • Patent number: 10293297
    Abstract: A method for removal of a foulant from a carrier gas is disclosed. A solids conveyance device that spans a vessel is provided, comprising an enclosed section and a filtering section. A cryogenic liquid and the carrier gas are provided to the enclosed section. The foulant condenses, dissolves, or desublimates into the cryogenic liquid, forming a cryogenic slurry and a foulant-depleted carrier gas entrained in the cryogenic slurry. The solids conveyance device advances the cryogenic slurry into the filtering section. The foulant-depleted carrier gas leaves the vessel through an upper portion of the permeable exterior wall and a warmed cryogenic liquid is removed from the cryogenic slurry through a lower portion of the permeable exterior wall, resulting in a solid foulant that is passed out of the solids outlet. In this manner, the foulant is removed from the carrier gas.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: May 21, 2019
    Assignee: Sustainable Energy Solutions, LLC
    Inventors: Larry Baxter, Kyler Stitt, Christopher Hoeger, Aaron Sayre, Eric Mansfield, Nathan Davis
  • Publication number: 20190128603
    Abstract: Devices, methods, and systems for stripping a vapor from a gas are disclosed. A carrier gas is bubbled through a liquid coolant in a vessel. The vessel contains a mesh screen, packing materials, or combinations thereof. The carrier gas has a vapor component. The vapor component condenses, freezes, deposits, desublimates, or a combination thereof out of the carrier gas onto the mesh screen, the packing material, or combinations thereof, as a solid component. The solid component dissolves into the coolant as the coolant passes through the mesh screen, the packing material, or combinations thereof.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 2, 2019
    Inventors: Larry Baxter, Kyler Stitt, Blake Pilling, Nathan Davis
  • Publication number: 20190128604
    Abstract: Devices, systems, and methods for removing a component from a fluid are disclosed. A feed fluid is heated by passing the feed fluid through a heating path of a first indirect-contact heat exchanger (ICHE). The feed fluid contains a first component. The fluid is heated from a first temperature to a second temperature, resulting in a heated feed fluid. The heated feed fluid is passed through a desiccator, containing a desiccant. The first component is bound up to the desiccant, resulting in a stripped-heated feed fluid. The stripped-heated feed fluid is cooled by passing the stripped-heated feed fluid through a cooling path of the first indirect-contact heat exchanger (ICHE). The stripped-heated feed fluid is cooled from a second temperature to a third temperature, the third temperature being greater than the first temperature, producing a product fluid.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 2, 2019
    Inventors: Larry Baxter, Aaron Sayre, Kyler Stitt, Eric Mansfield, Christopher Hoeger, Andrew Baxter, Nathan Davis
  • Publication number: 20190105616
    Abstract: A device for bubbling a gas into a liquid is disclosed. The device comprises a first bubbling apparatus nested inside a second bubbling apparatus. The first bubbling apparatus comprises a gas inlet for receiving the gas and a plurality of first openings for releasing the gas. The second bubbling apparatus at least partially encloses the plurality of first openings of the first bubbling apparatus. The second bubbling apparatus receives the gas from the plurality of first openings. The second bubbling apparatus comprises a plurality of second openings for bubbling the gas into the liquid.
    Type: Application
    Filed: October 9, 2017
    Publication date: April 11, 2019
    Inventors: Larry Baxter, Jacom Chamberlain, Kyler Stitt, David Frankman, Christopher Bence, Aaron Sayre
  • Publication number: 20190107126
    Abstract: Devices, systems, and methods for compressing a gas are disclosed. A low-pressure gas is drawn into a vessel through a source gas inlet. The source gas inlet and a liquid gas outlet are sealed. A liquid is pumped into the vessel through a liquid inlet such that the low-pressure gas is compressed to produce a high-pressure gas. The liquid inlet is sealed. A destination gas outlet is opened and the high-pressure gas is passed out of the vessel. The destination gas outlet is sealed. The source gas inlet is opened. A liquid outlet is opened and the liquid is removed out of the vessel such that the low-pressure gas is drawn into the vessel as the liquid is removed from the vessel.
    Type: Application
    Filed: October 10, 2017
    Publication date: April 11, 2019
    Inventors: Larry Baxter, Nathan Davis
  • Publication number: 20190099693
    Abstract: A method for separating a dissolved product from a liquid is disclosed. A carrier liquid is cooled in a direct-contact exchanger, the direct-contact exchanger using a liquid coolant to cool the carrier liquid. The carrier liquid comprises a dissolved product. The carrier liquid and the liquid coolant are substantially immiscible. A portion of the dissolved product is condensed, frozen, deposited, desublimated, or a combination thereof out of the carrier liquid as a solid product at a liquid-liquid interface between the liquid coolant and the carrier liquid. The solid product is entrained in the carrier liquid, the liquid coolant, or a combination thereof. The solid product is separated from the carrier liquid, the liquid coolant, or a combination thereof.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 4, 2019
    Inventors: Larry Baxter, Nathan Davis
  • Publication number: 20190099707
    Abstract: Devices, systems, and methods for separating a vapor from a gas are disclosed. A gas is passed through a direct-contact exchanger. The exchanger using a contact liquid to cool the gas. The gas comprises a vapor. A portion of the vapor is condensed as the gas passes through the direct-contact exchanger, producing a product liquid and a vapor-depleted gas. The product liquid is immiscible in the contact liquid. The product liquid is gravity settled from the contact liquid such that the contact liquid and the product liquid separate in the direct-contact exchanger.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 4, 2019
    Inventors: Larry Baxter, Nathan Davis
  • Publication number: 20190099701
    Abstract: A system and a method for removing solid buildup from a filter media is disclosed. A slurry is passed parallel across a cross-flow filter, the filter comprising a conductive filter media and the slurry comprising a carrier liquid and solids. A portion of the carrier liquid crosses through the filter media as a permeate while a thickened slurry continues parallel to the filter media. A blockage of at least a portion of the filter media is detected. The blockage comprises a portion of the solids. At least a portion of the filter media is heated to a melting temperature of the solids, such that a portion of the blockage melts, whereby the blockage is cleared.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 4, 2019
    Inventors: Larry Baxter, Skyler Chamberlain, Kyler Stitt, Aaron Sayre, Jacom Chamberlain, Nathan Davis
  • Publication number: 20190101334
    Abstract: Devices, systems, and methods for a heat exchanger and operation of a heat exchanger are disclosed. The heat exchanger comprises a chamber with a plurality of fluid inlets and a plurality of fluid outlets. The chamber comprises plates, the plates being parallel and defining fluid plenums between each of the plates. The fluid plenums define a fluid flow path, wherein each of the fluid plenums are aligned with one of the plurality of fluid inlets, one of the plurality of fluid outlets, a fluid path between at least two of the fluid plenums, or a combination thereof. The plates are mounted on guides perpendicular to a plane of the plates. The plates move along the guides due to changes in pressure in the fluid plenums, application of an external force to the one or more plates, or a combination thereof.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 4, 2019
    Inventors: Larry Baxter, Kyler Stitt, Aaron Sayre, Nathan Davis, Seth Babcock
  • Patent number: 10247494
    Abstract: A method for preventing fouling of an operating heat exchanger is disclosed. A carrier liquid is provided to the heat exchanger. The carrier liquid contains a potential fouling agent. The potential fouling agent is entrained in the carrier liquid, dissolved in the carrier liquid, or a combination thereof. The potential fouling agent fouls the heat exchanger by condensation, crystallization, solidification, desublimation, reaction, deposition, or combinations thereof. A gas-injection device is provided on the inlet of the heat exchanger. A non-reactive gas is injected into the carrier liquid through the gas-injection device. The non-reactive gas will not foul the heat exchanger surface and will not condense into the carrier liquid. The non-reactive gas creates a disturbance by increasing flow velocity and creating a shear discontinuity, thereby breaking up crystallization and nucleation sites on the surface of the heat exchanger. In this manner, fouling of the operating heat exchanger is prevented.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: April 2, 2019
    Assignee: Sustainable Energy Solutions, LLC
    Inventors: Larry Baxter, David Frankman, Nathan Davis
  • Publication number: 20190093967
    Abstract: Devices, systems, and methods for cooling a gas is disclosed. A slurry is passed through a droplet generating device to produce droplets of the slurry. The slurry comprises a contact liquid and solids. A melting point of the solids is higher than a vaporization point of the contact liquid. A carrier gas is passed across the droplets to exchange heat between the carrier gas and the droplets. At least a portion of the heat transferred to the droplets melts the solids.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Inventors: Larry Baxter, Jacom Chamberlain, Nathan Davis
  • Publication number: 20190070619
    Abstract: A device for producing droplets is disclosed. A disk assembly comprising a first disk mounted to a second disk is provided. The first disk comprises first openings. The second disk comprises second openings. The first openings and the second openings alternately align with one another such that, as a liquid passes through the first openings and the second openings, the liquid falls as a droplet as the first openings and the second openings skew apart.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 7, 2019
    Inventors: Larry Baxter, Aaron Sayre, David Frankman, Nathan Davis
  • Publication number: 20190070551
    Abstract: A device and a method for separating a vapor component from a gas is disclosed. A vessel comprising a top portion and a bottom portion is provided. The top portion comprises a gas outlet, a fluid inlet, and a direct-contact heat exchanger. The bottom portion comprises an indirect-contact heat exchanger, a gas inlet manifold, and a fluid outlet manifold. The indirect-contact heat exchanger is aligned vertically and comprises parallel exchange surfaces. Plenums between the exchange surfaces comprise alternating, adjacent ascending gas channels and descending fluid channels. The gas inlet manifold comprises one or more inlets adjacent to a top portion of each of the ascending gas channels. The fluid outlet manifold comprises one or more outlets adjacent to a bottom portion of each of the descending fluid channels.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 7, 2019
    Inventors: Larry Baxter, Hannah Knight, Blake Pilling, Nathan Davis
  • Publication number: 20190060819
    Abstract: A device and a method for contacting gases and liquids in the presence of entrained solids is disclosed. A vertical, cylindrical vessel of a first diameter with a bubbling apparatus is provided comprising an outer apparatus diameter, surrounded by an annular space, a height above the bottom of the vessel. The outer apparatus diameter is between ? and ¾ of the first diameter. The height is less than ½ of the difference between the first diameter and the outer apparatus diameter. The carrier gas bubbles upward out of the bubbling apparatus. A fluid passing through the vessel transitions from turbulent, to laminar or transitional, back to turbulent flow due to the changes in flow path areas.
    Type: Application
    Filed: August 22, 2017
    Publication date: February 28, 2019
    Inventors: Larry Baxter, Aaron Sayre
  • Publication number: 20190063832
    Abstract: A method for separating components from a fluid is disclosed. A cooling element is provided and is disposed in contact with a distal side of one or more thermally-conductive surfaces. One or more resistive heating elements are provided and are disposed in contact with or embedded in a proximal side of the one or more thermally-conductive surfaces. A fluid comprising one or more secondary components is provided. The fluid is passed across the one or more thermally conductive surfaces, the one or more secondary components freezing, crystallizing, desublimating, depositing, condensing, or combinations thereof, out of the fluid. The one or more resistive heating elements engage such that the one or more solid secondary components detach and pass out the solids outlet. The one or more resistive heating elements disengage, restarting production of the one or more solid secondary components.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Larry Baxter, Eric Mansfield, Christopher Hoeger, Kyler Stitt, Skyler Chamberlain, Nathan Davis
  • Patent number: 10213731
    Abstract: A method for continuously removing carbon dioxide vapor from a carrier gas is disclosed. This method includes, first, causing direct contact of the carrier gas with a liquid mixture in a separation chamber, the carrier gas condensing at a lower temperature than the carbon dioxide vapor. A combination of chemical effects cause the carbon dioxide to condense, complex, or both condense and complex with the liquid mixture.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: February 26, 2019
    Assignee: Sustainable Energy Solutions LLC, LLC
    Inventors: Larry Baxter, Aaron Sayre, Stephanie Burt, Nathan Davis
  • Publication number: 20190039836
    Abstract: A method and device for transferring solid particles between zones of different pressures is disclosed. A rotating annular disk spans a pressure barrier and comprises a radial piston cylinder connecting the exterior with the interior. A piston is disposed within the radial piston cylinder comprising a proximal end and distal end, the distal end comprising a cam follower. A stationary closed cam device is located within the interior portion comprising an internal cam profile. The cam follower is in contact with the internal cam profile. As the disk rotates, the cam follower tracks the cam profile causing the piston to move rectilinearly through the radial piston cylinder. As the radial piston cylinder aligns with a solids source, the piston retracts, providing a cavity into which the solid particles fall. As the radial piston cylinder aligns with a solids receptacle the piston returns, ejecting the solid particles into the solids receptacle.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 7, 2019
    Inventors: Larry Baxter, Jacom Chamberlain, David Frankman, Nathan Davis
  • Publication number: 20190039081
    Abstract: A device and method for transferring solid particles between zones of different ambient conditions is disclosed. A piston chamber comprising a solids inlet, a solids outlet, and a piston is provided. The solids inlet is adjacent to a source of solid particles, the source being at a first ambient condition. The solids outlet is adjacent to a solids receptacle, the solids receptacle being at a second ambient condition. The piston comprises a hollow. The piston traverses back and forth across the piston chamber such that the hollow is moved alternately adjacent to the solids inlet and the solids outlet. The solid particles pass into the hollow as the hollow is adjacent to the solids inlet, and pass out of the hollow as the hollow is adjacent to the solids outlet.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 7, 2019
    Inventors: Larry Baxter, Jacom Chamberlain, David Frankman, Nathan Davis
  • Patent number: 10195615
    Abstract: A method for separating a vapor from a carrier gas is disclosed. An air-sparged hydrocyclone is provided with a porous sparger covered by an outer gas plenum. A cryogenic liquid is provided to the tangential feed inlet at a velocity that induces a tangential flow and a cyclone vortex in the cyclone. The carrier gas is injected into the air-sparged hydrocyclone through the porous sparger. The vapor dissolves, condenses, desublimates, or a combination thereof, forming a vapor-depleted carrier gas and a vapor-enriched cryogenic liquid. The vapor-depleted gas is drawn through a vortex finder while the vapor-enriched cryogenic liquid is drawn through an apex nozzle outlet. In this manner, the vapor is removed from the carrier gas.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: February 5, 2019
    Assignee: Sustainable Energy Solutions LLC
    Inventors: Larry Baxter, Christopher Hoeger, Aaron Sayre, Skyler Chamberlain, Kyler Stitt, Stephanie Burt, Eric Mansfield, Jacom Chamberlain, Andrew Baxter, Nathan Davis