Patents by Inventor Larry D. McMillan

Larry D. McMillan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020109178
    Abstract: An integrated circuit capacitor containing a thin film of dielectric metal oxide is formed above a silicon germanium substrate. A silicon nitride diffusion barrier layer is deposited on a silicon germanium substrate to prevent evaporation of the substrate in subsequent heating steps. A silicon dioxide stress reduction layer is deposited on the diffusion barrier layer. A bottom electrode is formed on the stress reduction layer, then a liquid precursor is spun on the bottom electrode, dried at about 400° C., and annealed at between 600° C. and 850° C. to form a BST capacitor dielectric. A top electrode is deposited on the dielectric and annealed. The integrated circuit may also include a BiCMOS device, a HBT device or a MOSFET.
    Type: Application
    Filed: April 10, 2002
    Publication date: August 15, 2002
    Applicant: Symetrix Corporation
    Inventors: Larry D. McMillan, Carlos A. Paz de Araujo, Koji Arita, Masamichi Azuma
  • Publication number: 20020092472
    Abstract: A plurality of liquids, the flow of each controlled by a volumetric flowrate controller, are mixed in a mixer to form a final precursor that is misted and then deposited on a substrate. A physical property of precursor liquid is adjusted by adjusting the volumetric flowrate controllers, so that when precursor is applied to substrate and treated, the resulting thin film of solid material has a smooth and planar surface. Typically the physical property is the viscosity of the precursor, which is selected to be relatively low, in the range of 1-2 centipoise.
    Type: Application
    Filed: March 12, 2002
    Publication date: July 18, 2002
    Applicant: Symetrix Corporation and Matsushita Electronics Corporation
    Inventors: Shinichiro Hayashi, Larry D. McMillan, Carlos A. Paz de Araujo
  • Publication number: 20020087018
    Abstract: A liquid precursor for forming a transparent metal oxide thin film comprises a first organic precursor compound. In one embodiment, the liquid precursor is for making a conductive thin film. In this embodiment, the liquid precursor contains a first metal from the group including tin, antimony, and indium dissolved in an organic solvent. The liquid precursor preferably comprises a second organic precursor compound containing a second metal from the same group. Also, the liquid precursor preferably comprises an organic dopant precursor compound containing a metal selected from the group including niobium, tantalum, bismuth, cerium, yttrium, titanium, zirconium, hafnium, silicon, aluminum, zinc and magnesium. Liquid precursors containing a plurality of metals have a longer shelf life. The addition of an organic dopant precursor compound containing a metal, such as niobium, tantalum or bismuth, to the liquid precursor enhances control of the conductivity of the resulting transparent conductor.
    Type: Application
    Filed: November 9, 2001
    Publication date: July 4, 2002
    Applicant: Symetrix Corporation
    Inventors: Jolanta Celinska, Carlos A. Paz de Araujo, Joseph D. Cuchiaro, Jeffrey W. Bacon, Larry D. McMillan
  • Patent number: 6413883
    Abstract: A plurality of liquids, the flow of each controlled by a volumetric flowrate controller, are mixed in a mixer to form a final precursor that is misted and then deposited on a substrate. A physical property of precursor liquid is adjusted by adjusting the volumetric flowrate controllers, so that when precursor is applied to substrate and treated, the resulting thin film of solid material has a smooth and planar surface. Typically the physical property is the viscosity of the precursor, which is selected to be relatively low, in the range of 1-2 centipoise.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: July 2, 2002
    Assignees: Symetrix Corporation, Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinichiro Hayashi, Larry D. McMillan, Carlos A. Paz de Araujo
  • Patent number: 6404003
    Abstract: An integrated circuit capacitor containing a thin film delectric metal oxide is formed above a silicon germanium substrate. A silicon nitride diffusion barrier layer is deposited on a silicon germanium substrate to prevent evaporation of the substrate in subsequent heating steps. A silicon dioxide stress reduction layer is deposited on the diffusion barrier layer. A bottom electrode is formed on the stress reduction layer, then a liquid precursor is spun on the bottom electrode, dried at about 400° C., and annealed at between 600° C. and 850° C. to form a BST capacitor dielectric. A top electrode is deposited on the dielectric and annealed. The integrated circuit may also include a BiCMOS device, a HBT device or a MOSFET.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: June 11, 2002
    Assignees: Symetrix Corporation, Matsushita Electric Industrial Co., Ltd.
    Inventors: Larry D. McMillan, Carlos A. Paz de Araujo, Koji Arita, Masamichi Azuma
  • Patent number: 6383555
    Abstract: A substrate is located within a deposition chamber, the substrate defining a substrate plane. A liquid precursor is misted by ultrasonic or venturi apparatus, to produce a colloidal mist. The mist is generated, allowed to settle in a buffer chamber, filtered through a system up to 0.01 micron, and flowed into the deposition chamber between the substrate and barrier plate to deposit a liquid layer on the substrate. The liquid is dried to form a thin film of solid material on the substrate, which is then incorporated into an electrical component of an integrated circuit.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: May 7, 2002
    Assignees: Symetrix Corporation, Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinichiro Hayashi, Larry D. McMillan, Carlos A. Paz de Araujo
  • Patent number: 6376691
    Abstract: A liquid precursor for forming a transparent metal oxide thin film comprises a first organic precursor compound. In one embodiment, the liquid precursor is for making a conductive thin film. In this embodiment, the liquid precursor contains a first metal from the group including tin, antimony, and indium dissolved in an organic solvent. The liquid precursor preferably comprises a second organic precursor compound containing a second metal from the same group. Also, the liquid precursor preferably comprises an organic dopant precursor compound containing a metal selected from the group including niobium, tantalum, bismuth, cerium, yttrium, titanium, zirconium, hafnium, silicon, aluminum, zinc and magnesium. Liquid precursors containing a plurality of metals have a longer shelf life. The addition of an organic dopant precursor compound containing a metal, such as niobium, tantalum or bismuth, to the liquid precursor enhances control of the conductivity of the resulting transparent conductor.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: April 23, 2002
    Assignee: Symetrix Corporation
    Inventors: Jolanta Celinska, Carlos A. Paz de Araujo, Joseph D. Cuchiaro, Jeffrey W. Bacon, Larry D. McMillan
  • Patent number: 6373743
    Abstract: A ferroelectric non-volatile memory comprising: a plurality of memory cells each containing a ferroelectric FET, each of said ferroelectric FETs having a source, a drain, a substrate, and a gate. The FETs are arranged in an array comprising a plurality of rows and a plurality of columns. There are a plurality of row select lines, each associated with one of the rows of said ferroelectric FETs, and a plurality of column select lines, each associated with one of the columns of ferroelectric FETs. Each of the sources is directly electrically connected to its associated row select line, and each of the drains is directly electrically connected to its associated column select line. The source and substrate of each FET are also directly electrically connected. A memory cell is read by connecting its row select line to ground, and its column select line to a small voltage. All the gates, and the row select lines of non-selected cells are open or connected to a high resistance source.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: April 16, 2002
    Assignee: Symetrix Corporation
    Inventors: Zheng Chen, Myoungho Lim, Vikram Joshi, Carlos A. Paz de Araujo, Larry D. McMillan
  • Patent number: 6370056
    Abstract: A ferroelectric non-volatile memory comprising: a plurality of memory cells, each containing an FeFET and a MOSFET, each of said FeFETs having a source, a drain, a substrate, and a gate, and each MOSFET having a pair of source/drains and a gate. The cells are arranged in an array comprising a plurality of rows and a plurality of columns. A gate line and a bit line are associated with each column, and a word line, a drain line, and a substrate line are associated with each row. One source/drain of each MOSFET is connected to its corresponding gate line; the other source/drain is connected to the gate of the FeFET in the cell. The gate of the MOSFET is connected to its corresponding word line which provides a write and erase enable signal. The drain of the FeFET is connected to its corresponding drain line, and the source of the FeFET is connected to its corresponding bit line. The substrate of each FeFET is connected to its corresponding substrate line.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: April 9, 2002
    Assignee: Symetrix Corporation
    Inventors: Zheng Chen, Vikram Joshi, Myoungho Lim, Carlos A. Paz de Araujo, Larry D. McMillan
  • Patent number: 6365927
    Abstract: A hydrogen diffusion barrier in an integrated circuit is located to inhibit diffusion of hydrogen to a thin film of metal oxide material in an integrated circuit. The hydrogen diffusion barrier comprises at least one of the following nitrides: aluminum titanium nitride (Al2Ti3N6), aluminum silicon nitride (Al2Si3N6), aluminum niobium nitride (AlNb3N6), aluminum tantalum nitride (AlTa3N6), aluminum copper nitride (Al2Cu3N4), tungsten nitride (WN), and copper nitride (Cu3N2). The thin film of metal oxide is ferroelectric or high-dielectric, nonferroelectric material. Preferably, the metal oxide comprises ferroelectric layered superlattice material. Preferably, the hydrogen barrier layer is located directly over the thin film of metal oxide.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: April 2, 2002
    Assignee: Symetrix Corporation
    Inventors: Joseph D. Cuchiaro, Carlos A. Paz de Araujo, Larry D. McMillan
  • Patent number: 6339238
    Abstract: A ferroelectric non-volatile memory in which each memory cell consists of a single electronic element, a ferroelectric FET. The FET includes a source, drain, gate and substrate. A cell is selected for writing or reading by application of bias voltages to the source, drain, gate or substrate. A gate voltage equal to one truth table logic value and a drain voltage equal to another truth table logic value are applied via a row decoder, and a substrate bias equal to a third truth table logic value is applied via a column decoder to write to the memory a resultant Ids logic state, which can be non-destructively read by placing a voltage across the source and drain.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: January 15, 2002
    Assignee: Symetrix Corporation
    Inventors: Myoungho Lim, Vikram Joshi, Joseph D. Cuchiaro, Larry D. McMillan, Carlos A. Paz de Araujo
  • Publication number: 20010054728
    Abstract: Integrated circuit capacitors in which the capacitor dielectric is a thin film of BST having a grain size smaller than 200 nanometers formed above a silicon germanium substrate. Typical grain sizes are 40 nm and less. The BST is formed by deposition of a liquid precursor by a spin-on process. The original liquid precursor includes an alkoxycarboxylate dissolved in 2-methoxyethanol and a xylene exchange is performed just prior to spinning. The precursor is dried in air at a temperature of about 400° C. and then furnace annealed in oxygen at a temperature of between 600° C. and 850° C.
    Type: Application
    Filed: July 16, 2001
    Publication date: December 27, 2001
    Applicant: Symetrix Corporation
    Inventors: Carlos A. Paz de Araujo, Masamichi Azuma, Larry D. McMillan, Koji Arita
  • Patent number: 6258733
    Abstract: A mass flow controller controls the delivery of a precursor to a mist generator. The precursor is misted utilizing a venturi in which a combination of oxygen and nitrogen gas is charged by a corona wire and passes over a precursor-filled throat. The mist is refined using a particle inertial separator, electrically filtered so that it comprises predominantly negative ions, passes into a velocity reduction chamber, and then flows into a deposition chamber through inlet ports in an inlet plate that is both a partition between the chambers and a grounded electrode. The inlet plate is located above and substantially parallel to the plane of the substrate on which the mist is to be deposited. The substrate is positively charged to a voltage of about 5000 volts. There are 440 inlet ports per square inch in an 39 square inch inlet port area of the inlet plate directly above the substrate. The inlet port area is approximately equal to the substrate area.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: July 10, 2001
    Assignee: Sand hill Capital II, LP
    Inventors: Narayan Solayappan, Robert W. Grant, Larry D. McMillan, Carlos A. Paz de Araujo
  • Patent number: 6203619
    Abstract: An apparatus and method are disclosed for fabricating thin films for use in an active component of an integrated circuit by the use of an assembly line type process. A plurality of substrate stations are located on a platen which is rotated to move each station sequentially between a misted deposition device, a drying device, and a solidification device. The misted deposition device includes a mist showerhead in a movable housing. The mist showerhead separates a velocity reduction chamber from a deposition chamber.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: March 20, 2001
    Assignee: Symetrix Corporation
    Inventor: Larry D. McMillan
  • Patent number: 6198225
    Abstract: A thin film of ferroelectric layered superlattice material in a flat panel display device is energized to selectively influence the display image. In one embodiment, a voltage pulse causes the layered superlattice material to emit electrons that impinge upon a phosphor, causing the phosphor to emit light. In another embodiment, an electric potential creates a remanent polarization in the layered superlattice material, which exerts an electric field in liquid crystal layer, thereby influencing the transmissivity of light through the liquid crystal. The layered superlattice material is a metal oxide formed using an inventive liquid precursor containing an alkoxycarboxylate. The thin film thickness is preferably in the range 50-140 nm, so that polarizabilty and transparency of the thin film is enhanced. A display element may comprise a varistor device to prevent cross-talk between pixels and to enable sudden polarization switching. A functional gradient in the ferroelectric thin film enhances electron emission.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: March 6, 2001
    Assignees: Symetrix Corporation, Matsushita Electronics Corporation
    Inventors: Gota Kano, Yasuhiro Shimada, Shinichiro Hayashi, Koji Arita, Carlos A. Paz de Araujo, Joseph D. Cuchiaro, Larry D. McMillan
  • Patent number: 6174213
    Abstract: Metal organic precursor compounds are dissolved in an organic solvent to form a nonaqueous liquid precursor. The liquid precursor is applied to the inner envelope surface of a fluorescent lamp and heated to form a metal oxide thin film layer. The metal oxide thin film layer may be a conductor, a protective layer or provide other functions. The films have a thickness of from 20 nm to 500 nm. A conductive layer comprising tin-antimony oxide with niobium dopant may be fabricated to have a differential resistivity profile by selecting a combination of precursor composition and annealing temperatures.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: January 16, 2001
    Assignees: Symetrix Corporation, Matsushita Electronics Corporation
    Inventors: Carlos A. Paz de Araujo, Jolanta Celinska, Joseph D. Cuchiaro, Jeffrey W. Bacon, Larry D. McMillan, Akihiro Matsuda, Gota Kano, Yoshio Yamaguchi, Tatsuo Morita, Hideo Nagai
  • Patent number: 6143063
    Abstract: A substrate is located within a deposition chamber, the substrate defining a substrate plane. A liquid precursor is misted by ultrasonic or venturi apparatus, to produce a colloidal mist. The mist is generated, allowed to settle in a buffer chamber, filtered through a system up to 0.01 micron, and flowed into the deposition chamber between the substrate and barrier plate to deposit a liquid layer on the substrate. The liquid is dried to form a thin film of solid material on the substrate, which is then incorporated into an electrical component of an integrated circuit.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: November 7, 2000
    Assignees: Symetrix Corporation, Matsushita Electronics Corporation
    Inventors: Shinichiro Hayashi, Larry D. McMillan, Carlos A. Paz de Araujo
  • Patent number: 6133050
    Abstract: A precursor solution formed of a liquid polyoxyalkylated metal complex in as solvent is applied to a substrate in the formation of a metal oxide thin film. The liquid thin film is baked in air to a temperature up to 500.degree. C. while UV radiation having a wavelength ranging from 180 nm to 300 nm is applied. The thin film can be twice-baked at increasing temperatures while UV radiation is applied at one or both bakings. The film is then annealed at temperature ranging from about 700.degree. C. to 850.degree. C. to produce a thin-film solid metal oxide product. Alternatively, the UV radiation may be applied to the liquid precursor, the thin film may be annealed with UV radiation, or combinations of such applications of UV radiation to the precursor, to the thin film before or after baking, and/or UV annealing may be used. The use of UV radiation significantly reduces the leakage current and carbon impurity content of the final metal oxide.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: October 17, 2000
    Assignees: Symetrix Corporation, Matsushita Electronics Corporation
    Inventors: Masamichi Azuma, Larry D. McMillan, Carlos A. Paz de Araujo, Michael C. Scott
  • Patent number: 6116184
    Abstract: A mass flow controller controls the delivery of a precursor to a mist generator. The precursor is misted utilizing a venturi in which a combination of oxygen and nitrogen gas is charged by a corona wire and passes over a precursor-filled throat. The mist is refined using a particle inertial separator, electrically filtered so that it comprises predominately negative ions, passes into a velocity reduction chamber, and then flows into a deposition chamber through inlet ports in an inlet plate that is both a partition between the chambers and a grounded electrode. The inlet plate is located above and substantially parallel to the plane of the substrate on which the mist is to be deposited. The substrate is positively charged to a voltage of about 5000 volts. There are 440 inlet ports per square inch in an 39 square inch inlet port area of the inlet plate directly above the substrate. The inlet port area is approximately equal to the substrate area.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: September 12, 2000
    Assignees: Symetrix Corporation, Primaxx, Inc.
    Inventors: Narayan Solayappan, Robert W. Grant, Larry D. McMillan, Carlos A. Paz de Araujo
  • Patent number: 6110531
    Abstract: A mist is generated by a venturi from liquid precursors containing compounds used in chemical vapor deposition, transported in carrier gas through tubing at ambient temperature, passed into a heated zone where the mist droplets are gasified at a temperature of between 100.degree. C. and 200.degree. C., which is lower than the decomposition temperature of the precursor compounds. The gasified liquid is injected through an inlet assembly into a deposition reactor in which there is a substrate heated to from 400.degree. C. to 600.degree. C., on which the gasified compounds decompose and form a thin film of layered superlattice compound.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: August 29, 2000
    Assignee: Symetrix Corporation
    Inventors: Carlos A. Paz de Araujo, Larry D. McMillan, Narayan Solayappan, Jeffrey W. Bacon