Patents by Inventor Larry L. Hum

Larry L. Hum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9539614
    Abstract: A medical electrical lead body having an outer surface and including at least one lumen having an inner surface treated with a silane surface modifying agent to form a three-dimensional, densely cross-linked lubricious coating over at least a portion of the inner surface of the lumen. The outer surface of the lead body also may be similarly treated. The lubricious silane coating may reduce the coefficient of friction of the coated surface of the lead body by as much as 80% when compared to an uncoated surface. A reduction in the coefficient of friction may enhance the stringing efficiency of a conductor through the lead body lumen and may enhance its abrasion resistance.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: January 10, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shrojalkumar Desai, Leslie J. Carion, Larry L. Hum
  • Patent number: 8753708
    Abstract: A solventless method for forming a coating on a medical electrical lead is described. The method includes combining particles of a therapeutic agent with a polymeric material in a flowable form in the absence of a solvent to form a uniform suspension. A predetermined amount of the suspension is dispensed onto a portion of the lead and is then cured to form the therapeutic agent eluting layer. Additional layers such as a primer layer, fluoro-opaque layer and/or a topcoat layer can be formed using the solventless method. Employing a solventless method may avoid contraction of the layer being formed due to solvent evaporation during the curing process, and may facilitate greater control over the thickness of the therapeutic agent eluting coating.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: June 17, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Larry L. Hum, James Q. Feng, Arienne P. Simon, Tolga Tas
  • Publication number: 20130122185
    Abstract: A medical electrical lead body having an outer surface and including at least one lumen having an inner surface treated with a silane surface modifying agent to form a three-dimensional, densely cross-linked lubricious coating over at least a portion of the inner surface of the lumen. The outer surface of the lead body also may be similarly treated. The lubricious silane coating may reduce the coefficient of friction of the coated surface of the lead body by as much as 80% when compared to an uncoated surface. A reduction in the coefficient of friction may enhance the stringing efficiency of a conductor through the lead body lumen and may enhance its abrasion resistance.
    Type: Application
    Filed: January 7, 2013
    Publication date: May 16, 2013
    Inventors: Shrojalkumar Desai, Leslie J. Carion, Larry L. Hum
  • Patent number: 8372468
    Abstract: A medical electrical lead body having an outer surface and including at least one lumen having an inner surface treated with a silane surface modifying agent to form a three-dimensional, densely cross-linked lubricious coating over at least a portion of the inner surface of the lumen. The outer surface of the lead body also may be similarly treated. The lubricious silane coating may reduce the coefficient of friction of the coated surface of the lead body by as much as 80% when compared to an uncoated surface. A reduction in the coefficient of friction may enhance the stringing efficiency of a conductor through the lead body lumen and may enhance its abrasion resistance.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: February 12, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shrojalkumar Desai, Leslie J. Carion, Larry L. Hum
  • Patent number: 8209035
    Abstract: A lead having an extendable and retractable fixation mechanism has a rotating terminal pin at the terminal end which rotates the fixation mechanism at the distal end. As the terminal pin is rotated, the fixation mechanism is extended or retracted from the distal end of the lead. A threaded collar allows for the fixation mechanism to smoothly extend and retract from the lead, and allows for a 1:1 turn ratio between the terminal pin and the fixation mechanism. A fluoroscopic ring disposed at the distal end of the lead provides information during the implantation process.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: June 26, 2012
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David M. Flynn, Michael Brenzel, Jason Skubitz, Larry L. Hum, Carol Werlein, Christopher Paul Knapp, Gregory R. Ley, Jason Alan Shiroff, Brian David Soltis
  • Publication number: 20110052787
    Abstract: A solventless method for forming a coating on a medical electrical lead is described. The method includes combining particles of a therapeutic agent with a polymeric material in a flowable form in the absence of a solvent to form a uniform suspension. A predetermined amount of the suspension is dispensed onto a portion of the lead and is then cured to form the therapeutic agent eluting layer. Additional layers such as a primer layer, fluoro-opaque layer and/or a topcoat layer can be formed using the solventless method. Employing a solventless method may avoid contraction of the layer being formed due to solvent evaporation during the curing process, and may facilitate greater control over the thickness of the therapeutic agent eluting coating.
    Type: Application
    Filed: July 8, 2010
    Publication date: March 3, 2011
    Inventors: Larry L. Hum, James Q. Feng, Arienne P. Simon, Tolga Tas
  • Publication number: 20100075018
    Abstract: A medical electrical lead body having an outer surface and including at least one lumen having an inner surface treated with a silane surface modifying agent to form a three-dimensional, densely cross-linked lubricious coating over at least a portion of the inner surface of the lumen. The outer surface of the lead body also may be similarly treated. The lubricious silane coating may reduce the coefficient of friction of the coated surface of the lead body by as much as 80% when compared to an uncoated surface. A reduction in the coefficient of friction may enhance the stringing efficiency of a conductor through the lead body lumen and may enhance its abrasion resistance.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 25, 2010
    Inventors: Shrojalkumar Desai, Leslie J. Carion, Larry L. Hum
  • Publication number: 20090048652
    Abstract: A medical device having at least one plasma polymerized coating allowing for a first component to be coupled with a second component.
    Type: Application
    Filed: August 13, 2007
    Publication date: February 19, 2009
    Applicant: Cardiac Pacemakers, Inc
    Inventors: Shamim M. Malik, Paul E. Zarembo, Larry L. Hum
  • Publication number: 20080262587
    Abstract: A lead having an extendable and retractable fixation mechanism has a rotating terminal pin at the terminal end which rotates the fixation mechanism at the distal end. As the terminal pin is rotated, the fixation mechanism is extended or retracted from the distal end of the lead. A threaded collar allows for the fixation mechanism to smoothly extend and retract from the lead, and allows for a 1:1 turn ratio between the terminal pin and the fixation mechanism. A fluoroscopic ring disposed at the distal end of the lead provides information during the implantation process.
    Type: Application
    Filed: June 23, 2008
    Publication date: October 23, 2008
    Applicant: Cardiac Pacemakers, Inc
    Inventors: David M. Flynn, Michael Brenzel, Jason Skubitz, Larry L. Hum, Carol Werlein, Christopher Paul Knapp, Gregory R. Ley, Jason Alan Shiroff, Brian David Soltis
  • Patent number: 7412290
    Abstract: A seal adapted for use with medical devices is provided with a lead having a distal tip electrode. The distal tip of the lead is adapted for implantation on or about the heart and for connection to a system for monitoring or stimulating cardiac activity. The lead can include a fixation helix for securing the electrode to cardiac tissue. The lead assembly can alternatively include an open lumen lead tip. A seal is provided within the lead tip assembly such that the seal is expanded to prevent or limit further entry of fluids through the lead tip. The seal includes an expandable matrix, such as a hydrogel. The seal is formed on or within the lead when the lead and the seal comes into contact with a fluid and expands. The seal is also formed as a plug which is deployed through the medical device, and expands as the plug absorbs fluid. A housing incorporating the seal can also be attached to a portion of the medical device to provide the seal.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: August 12, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron W. Janke, Larry L. Hum, Randy Westlund, Ronald W. Heil, Jr., Bruce Tockman
  • Patent number: 7392095
    Abstract: A lead having an extendable and retractable fixation mechanism has a rotating terminal pin at the terminal end which rotates the fixation mechanism at the distal end. As the terminal pin is rotated, the fixation mechanism is extended or retracted from the distal end of the lead. A threaded collar allows for the fixation mechanism to smoothly extend and retract from the lead, and allows for a 1:1 turn ratio between the terminal pin and the fixation mechanism. A fluoroscopic ring disposed at the distal end of the lead provides information during the implantation process.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: June 24, 2008
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David M. Flynn, Michael Brenzel, Jason Skubitz, Larry L. Hum, Carol Werlein, Christopher Paul Knapp, Gregory R. Ley, Jason Alan Shiroff, Brian David Soltis
  • Patent number: 7089046
    Abstract: A helical element for insertion into tissue comprises a helical element having an insertion end, a protruding end and an open central area within the wire, rods, filaments, cables or the like that form the helix. The helical element has at least its insertion end covered by a cap of a water-soluble or water-dispersible composition. The cap is provided with a surface shape in a cross-section in which surface variations are present in the cross-section which create a surface orientation where a line from the center of the cross-section can intersect the surface, and a line perpendicular to said radius at a point of intersection with said surface forms four quadrants, three of said quadrants containing water-soluble or water-dispersible cap material. There is either a hollow area within the composition within the open central area or the material is more porous than the remaining material.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: August 8, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ronald W. Heil, Jr., Gregory R. Ley, Dwight Skinner, Larry L. Hum
  • Patent number: 6915169
    Abstract: A lead having an extendable and retractable fixation mechanism has a rotating terminal pin at the terminal end which rotates the fixation mechanism at the distal end. As the terminal pin is rotated, the fixation mechanism is extended or retracted from the distal end of the lead. A threaded collar allows for the fixation mechanism to smoothly extend and retract from the lead, and allows for a 1:1 turn ratio between the terminal pin and the fixation mechanism. A fluoroscopic ring disposed at the distal end of the lead provides information during the implantation process.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: July 5, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David M. Flynn, Michael Brenzel, Jason Skubitz, Larry L. Hum, Carol Werlein, Christopher Paul Knapp, Gregory R. Ley, Jason Alan Shiroff, Brian David Soltis
  • Patent number: 6901288
    Abstract: A seal adapted for use with medical devices is provided with a lead having a distal tip electrode. The distal tip of the lead is adapted for implantation on or about the heart and for connection to a system for monitoring or stimulating cardiac activity. The lead can include a fixation helix for securing the electrode to cardiac tissue. The lead assembly can alternatively include an open lumen lead tip. A seal is provided within the lead tip assembly such that the seal is expanded to prevent or limit further entry of fluids through the lead tip. The seal includes an expandable matrix, such as a hydrogel. The seal is formed on or within the lead when the lead and the seal comes into contact with a fluid and expands. The seal is also formed as a plug which is deployed through the medical device, and expands as the plug absorbs fluid. A housing incorporating the seal can also be attached to a portion of the medical device to provide the seal.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 31, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron W. Janke, Larry L. Hum, Randy Westlund, Ronald W. Heil, Jr., Bruce Tockman
  • Publication number: 20030040787
    Abstract: A lead having an extendable and retractable fixation mechanism has a rotating terminal pin at the terminal end which rotates the fixation mechanism at the distal end. As the terminal pin is rotated, the fixation mechanism is extended or retracted from the distal end of the lead. A threaded collar allows for the fixation mechanism to smoothly extend and retract from the lead, and allows for a 1:1 turn ratio between the terminal pin and the fixation mechanism. A fluoroscopic ring disposed at the distal end of the lead provides information during the implantation process.
    Type: Application
    Filed: October 4, 2002
    Publication date: February 27, 2003
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: David M. Flynn, Michael Brenzel, Jason Skubitz, Larry L. Hum, Carol Werlein, Christopher Paul Knapp, Gregory R. Ley, Jason Alan Shiroff, Brian David Soltis
  • Patent number: 6506457
    Abstract: The present methods provide an amorphous, conformal, protective, abrasion-resistant, lubricious fluoropolymer coating on to a polymer substrate via a gas plasma deposition method. The coating method, according to one embodiment of the method, involves generating a gas plasma by introducing a mixture of a fluorinated gas monomer and a hydrocarbon gas into an energetic ion field, such as an ion beam or the field produced by a radio-frequency source. The fluorinated gas monomer is selected from the group consisting of CF.sub.4, C.sub.2 F.sub.4, C.sub.2 F.sub.6, CF.sub.3.sub.2CO, CH.sub.2 CF.sub.2 and mixtures of the foregoing. The hydrocarbon gas is selected from the group consisting of C.sub.2 H.sub.2, C.sub.2 H.sub.4, C.sub.2 H.sub.6, and H.sub.2 and mixtures of the foregoing. The polymer substrate is exposed to the foregoing gas plasma for sufficient time to achieve the desired coating thickness.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: January 14, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventor: Larry L. Hum
  • Patent number: 6501990
    Abstract: A lead having an extendable and retractable fixation mechanism has a rotating terminal pin at the terminal end which rotates the fixation mechanism at the distal end. As the terminal pin is rotated, the fixation mechanism is extended or retracted from the distal end of the lead. A threaded collar allows for the fixation mechanism to smoothly extend and retract from the lead, and allows for a 1:1 turn ratio between the terminal pin and the fixation mechanism. A fluoroscopic ring disposed at the distal end of the lead provides information during the implantation process. The lead includes a terminal assembly having an outer terminal ring, a terminal pin, and an insulative sleeve disposed between the outer terminal ring and the terminal pin. The insulative sleeve is coupled with the outer terminal ring with a snap-fit connection.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: December 31, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory L. Sundberg, David M. Flynn, Michael Brenzel, Jason Skubitz, Larry L. Hum, Carol Werlein, Christopher Paul Knapp, Gregory R. Ley, Jason Alan Shiroff, Brian David Soltis
  • Publication number: 20020165442
    Abstract: A helical element for insertion into tissue comprises a helical element having an insertion end, a protruding end and an open central area within the wire, rods, filaments, cables or the like that form the helix. The helical element has at least its insertion end covered by a cap of a water-soluble or water-dispersible composition. The cap is provided with a surface shape in a cross-section in which surface variations are present in the cross-section which create a surface orientation where a line from the center of the cross-section can intersect the surface, and a line perpendicular to said radius at a point of intersection with said surface forms four quadrants, three of said quadrants containing water-soluble or water-dispersible cap material. There is either a hollow area within the composition within the open central area or the material is more porous than the remaining material.
    Type: Application
    Filed: July 2, 2002
    Publication date: November 7, 2002
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Ronald W. Heil, Gregory R. Ley, Dwight Skinner, Larry L. Hum
  • Patent number: 6473633
    Abstract: A helical element for insertion into tissue comprises a helical element having an insertion end, a protruding end and an open central area within the wire, rods, filaments, cables or the like that form the helix. The helical element has at least its insertion end covered by a cap of a water-soluble or water-dispersible composition. The cap is provided with a surface shape in a cross-section in which surface variations are present in the cross-section which create a surface orientation where a line from the center of the cross-section can intersect the surface, and a line perpendicular to said radius at a point of intersection with said surface forms four quadrants, three of said quadrants containing water-soluble or water-dispersible cap material. There is either a hollow area within the composition within the open central area or the material is more porous than the remaining material.
    Type: Grant
    Filed: July 29, 1999
    Date of Patent: October 29, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ronald W. Heil, Jr., Gregory R. Ley, Dwight Skinner, Larry L. Hum
  • Patent number: 6463334
    Abstract: A lead having an extendable and retractable fixation mechanism has a rotating terminal pin at the terminal end which rotates the fixation mechanism at the distal end. As the terminal pin is rotated, the fixation mechanism is extended or retracted from the distal end of the lead. A threaded collar allows for the fixation mechanism to smoothly extend and retract from the lead, and allows for a 1:1 turn ratio between the terminal pin and the fixation mechanism. A fluoroscopic ring disposed at the distal end of the lead provides information during the implantation process.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: October 8, 2002
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David M. Flynn, Michael Brenzel, Jason Skubitz, Larry L. Hum, Carol Werlein, Christopher Paul Knapp, Gregory R. Ley, Jason Alan Shiroff, Brian David Soltis