Patents by Inventor Larry Neil Lewis

Larry Neil Lewis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9956520
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 1, 2018
    Assignee: General Electric Company
    Inventors: Robert James Perry, Grigorii Lev Soloveichik, Malgorzata Iwona Rubinsztajn, Michael Joseph O'Brien, Larry Neil Lewis, Tunchiao Hubert Lam, Sergei Kniajanski, Dan Hancu
  • Patent number: 9902626
    Abstract: A method for removing nitrate ions from a solution is presented. The method includes providing a polymer comprising a protonated amine moiety and an anion derived from an acid having a pKa value greater than about 1. The method further includes contacting the polymer with the solution to bind at least a portion of the nitrate ions in the solution with the polymer, and form a polymer-nitrate complex. The method furthermore includes separating at least a portion of the polymer-nitrate complex from the solution.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: February 27, 2018
    Assignee: General Electric Company
    Inventors: Hongchen Dong, Larry Neil Lewis, Stephen Robert Vasconcellos
  • Patent number: 9828557
    Abstract: A reaction system and method for removing heteroatoms from oxidized-heteroatom-containing hydrocarbon streams and products derived therefrom are disclosed. An oxidized-heteroatom-containing hydrocarbon feed is reacted in a reaction system thereby forming non-ionic hydrocarbon products. The products derived therefrom are useful as transportation fuels, lubricants, refinery intermediates, or refinery feeds.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 28, 2017
    Assignee: AUTERRA, INC.
    Inventors: Jonathan Rankin, Sarah Clickner, Kyle Erik Litz, Larry Neil Lewis, John Faherty, Eric Kolibas, Stephen Hemberger, John Richardson, Mark Rossetti
  • Patent number: 9687819
    Abstract: A catalyst system comprising a first catalytic composition comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support. The pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers. The catalytic metal comprises nanocrystals.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: June 27, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ming Yin, Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Benjamin Hale Winkler, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Patent number: 9617921
    Abstract: A thermal actuator is provided and includes an expansion material disposed and configured to move a movable element from a first movable element position toward a second movable element position in accordance with an expansion condition of the expansion material. The expansion material includes an inorganic salt mixture or a metal oxide mixture.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: April 11, 2017
    Assignee: General Electric Company
    Inventors: Pramod Kumar Biyani, Larry Neil Lewis, Carlos Miguel Miranda, Slawomir Rubinsztajn, Stanley Frank Simpson
  • Patent number: 9586193
    Abstract: A material is described of formula NaxMyAlaSibO? with Face Centered Cubic (fcc) lattices forming F-4 3 m cubic structure, wherein M is at least one of lithium, potassium, rubidium, caesium, vanadium, chromium, iron, cobalt, nickel, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, and cerium; 0<x+y?22/3; wherein when y=0, 4<x?/3, when 0<y?/3, 0?x<22/3, and when M is potassium, x>0; 1?a?3; 1?b?3; and 0<??32/3. An exhaust gas system comprising the material and a method are also described herein.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: March 7, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Qijia Fu, Xiao Zhang, Chuan Lin, Youhao Yang, Daniel Norton, Larry Neil Lewis, Xiaoying Bao, Susan Elizabeth Corah, Yu Dong, Dejia Wang, Shizhong Wang
  • Patent number: 9545618
    Abstract: A method of preparing a catalyst composition suitable for removing sulfur from a catalytic reduction system and the catalyst composition prepared by the method are provided. The method of preparation of a catalyst composition, comprises: combining a metal oxide precursor, a catalyst metal precursor and an alkali metal precursor in the presence of a templating agent; hydrolyzing and condensing to form an intermediate product that comprises metal oxide, alkali metal oxide, and catalyst metal; and calcining to form a templated amorphous metal oxide substrate having a plurality of pores wherein the alkali metal oxide and catalyst metal are dispersed in an intermixed form in the metal oxide substrate.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: January 17, 2017
    Assignee: General Electric Company
    Inventors: Oltea Puica Siclovan, Daniel George Norton, Larry Neil Lewis, Dan Hancu, Xiaoying Bao, Robert Burch, Christopher Hardacre, Sarayute Chansai
  • Publication number: 20160375400
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Application
    Filed: September 9, 2016
    Publication date: December 29, 2016
    Inventors: Robert James Perry, Grigorii Lev Soloveichik, Malgorzata Iwona Rubinsztajn, Michael Joseph O'Brien, Larry Neil Lewis, Tunchiao Hubert Lam, Sergei Kniajanski, Dan Hancu
  • Patent number: 9463438
    Abstract: A composition includes a templated metal oxide substrate having a plurality of pores and a catalyst material includes silver. The composition under H2 at 30 degrees Celsius, the composition at a wavelength that is in a range of from about 350 nm to about 500 nm has a VIS-UV absorbance intensity that is at least 20 percent less than a standard silver alumina catalyst (Ag STD). The standard alumina is Norton alumina, and which has the same amount of silver by weight.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: October 11, 2016
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Dan Hancu, Oltea Puica Siclovan, Ming Yin
  • Patent number: 9463439
    Abstract: A composition includes a templated metal oxide, at least 3 weight percent of silver, and at least one catalytic metal. A method of making and a method of using are included.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: October 11, 2016
    Assignee: General Electric Company
    Inventors: Ming Yin, Larry Neil Lewis, Dan Hancu, Oltea Puica Siclovan
  • Patent number: 9440182
    Abstract: A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2; and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 13, 2016
    Assignee: General Electric Company
    Inventors: Michael Joseph O'Brien, Robert James Perry, Tunchiao Hubert Lam, Grigorii Lev Soloveichik, Sergei Kniajanski, Larry Neil Lewis, Malgorzata Iwona Rubinsztajn, Dan Hancu
  • Patent number: 9371408
    Abstract: The invention relates to a polymer derived from: reaction of glycidyl (meth)acrylate, allyl glycidyl ether or [(vinyloxy)methyl]oxirane with ammonia or primary amine to obtain a mixture of monomer compounds; reaction of the mixture of monomer compounds with at least one of acrylic acid, vinyl alcohol, vinyl acetate, acrylamide, methylacrylic acid, and methylacrylamide to obtain an intermediate polymer; and reaction of the intermediate polymer with a dithiocarbamic acid salt. Methods for using the polymer are also described herein.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: June 21, 2016
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Yangang Liang, Wenqing Peng, Xiaoan Xie, Shengxia Liu, Hongchen Dong, Stephen Robert Vasconcellos, Ping Lue, Edward Joseph Urankar, Larry Neil Lewis, Robert James Perry
  • Patent number: 9272271
    Abstract: A method of producing a catalyst composition is provided, the method comprising mixing (i) a first component comprising a zeolite, and (ii) a second component comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support, wherein the first component and the second component form an intimate mixture, and wherein the homogeneous solid mixture is produced by mixing a reactive solution comprising a precursor of the metal inorganic support and a templating agent with a precursor of the catalyst metal, and calcining the mixture to form the homogeneous solid mixture. The templating agent affects one or more of pore size, pore distribution, pore spacing, or pore dispersity of the metal inorganic support. The pores of the solid mixture produced after calcination may have an average diameter in a range of about 1 nanometer to about 15 nanometers.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 1, 2016
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Donald Wayne Whisenhunt, Jr., Dan Hancu, Ashish Balkrishna Mhadeshwar, Benjamin Hale Winkler, Daniel George Norton, Oltea Puica Siclovan, Ming Yin
  • Patent number: 9181405
    Abstract: A method for making lignin-amines is provided. The method comprises providing a lignin; then modifying the lignin with modifier to create a modified lignin; and then reacting the modified lignin with an amine to form a lignin-amine. Suitable modifiers comprise acrylates. A method for coagulating suspended materials in a water stream is also disclosed. The method comprises providing a water stream and contacting the suspended materials in the water stream with at least one lignin-amine.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: November 10, 2015
    Assignee: General Electric Company
    Inventors: Hongchen Dong, Wenqing Peng, Larry Neil Lewis
  • Publication number: 20150184086
    Abstract: A reaction system and method for removing heteroatoms from oxidized-heteroatom-containing hydrocarbon streams and products derived therefrom are disclosed. An oxidized-heteroatom-containing hydrocarbon feed is reacted in a reaction system thereby forming non-ionic hydrocarbon products. The products derived therefrom are useful as transportation fuels, lubricants, refinery intermediates, or refinery feeds.
    Type: Application
    Filed: February 23, 2015
    Publication date: July 2, 2015
    Inventors: Jonathan Rankin, Sarah Clickner, Kyle Erik Litz, Larry Neil Lewis, John Faherty, Eric Kolibas, Stephen Hemberger, John Richardson, Mark Rossetti
  • Publication number: 20150037140
    Abstract: A thermal actuator is provided and includes an expansion material disposed and configured to move a movable element from a first movable element position toward a second movable element position in accordance with an expansion condition of the expansion material. The expansion material includes an inorganic salt mixture or a metal oxide mixture.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: General Electric Company
    Inventors: Pramod Kumar Biyani, Larry Neil Lewis, Carlos Miguel Miranda, Slawomir Rubinsztajn, Stanley Frank Simpson
  • Publication number: 20150027949
    Abstract: A method for removing nitrate ions from a solution is presented. The method includes providing a polymer comprising a protonated amine moiety and an anion derived from an acid having a pKa value greater than about 1. The method further includes contacting the polymer with the solution to bind at least a portion of the nitrate ions in the solution with the polymer, and form a polymer-nitrate complex. The method furthermore includes separating at least a portion of the polymer-nitrate complex from the solution.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: General Electric Company
    Inventors: Hongchen Dong, Larry Neil Lewis, Stephen Robert Vasconcellos
  • Publication number: 20150023863
    Abstract: A material is described of formula NaxMyAlaSibO67 with Face Centered Cubic (fcc) lattices forming F -4 3 m cubic structure, wherein M is at least one of lithium, potassium, rubidium, caesium, vanadium, chromium, iron, cobalt, nickel, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, and cerium; 0<x+y?22/3; wherein when y=0, 4<x?/3, when 0<y?/3, 0?x<22/3, and when M is potassium, x>0; 1?a3; 1?b?3; and 0<??32/3. An exhaust gas system comprising the material and a method are also described herein.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Applicant: General Electric Company
    Inventors: Qijia FU, Xiao ZHANG, Chuan LIN, Youhao YANG, Daniel NORTON, Larry Neil LEWIS, Xiaoying BAO, Susan Elizabeth CORAH, Yu DONG, Dejia WANG, Shizhong WANG
  • Publication number: 20140378296
    Abstract: A method of producing a catalyst composition is provided, the method comprising mixing (i) a first component comprising a zeolite, and (ii) a second component comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support, wherein the first component and the second component form an intimate mixture, and wherein the homogeneous solid mixture is produced by mixing a reactive solution comprising a precursor of the metal inorganic support and a templating agent with a precursor of the catalyst metal, and calcining the mixture to form the homogeneous solid mixture. The templating agent affects one or more of pore size, pore distribution, pore spacing, or pore dispersity of the metal inorganic support. The pores of the solid mixture produced after calcination may have an average diameter in a range of about 1 nanometer to about 15 nanometers.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Applicant: General Electric Company
    Inventors: Larry Neil Lewis, Donald Wayne Whisenhunt, JR., Dan Hancu, Ashish Balkrishna Mhadeshwar, Benjamin Hale Winkler, Daniel George Norton, Oltea Puica Siclovan, Ming Yin
  • Patent number: 8889587
    Abstract: A catalyst system comprising a first catalytic composition comprising a first catalytic material disposed on a metal inorganic support; wherein the metal inorganic support has pores; and at least one promoting metal. The catalyst system further comprises a second catalytic composition comprising, (i) a zeolite, or (ii) a first catalytic material disposed on a first substrate, the first catalytic material comprising an element selected from the group consisting of tungsten, titanium, and vanadium. The catalyst system may further comprise a third catalytic composition. The catalyst system may further comprise a delivery system configured to deliver a reductant and optionally a co-reductant. A catalyst system comprising a first catalytic composition, the second catalytic composition, and the third catalytic composition is also provided. An exhaust system comprising the catalyst systems described herein is also provided.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 18, 2014
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Benjamin Hale Winkler, Dan Hancu, Daniel George Norton, Ashish Balkrishna Mhadeshwar