Patents by Inventor Lars Blank

Lars Blank has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180112241
    Abstract: The present invention relates to a host cell comprising an rhlA gene or an ortholog thereof that is capable of producing hydroxyalkanoyloxy alkanoic acid (HAA) and achieving an HAA concentration of more than 1 g L?1 when cultured. The invention further relates to methods of producing such a host cell and to the use of said host cell for producing HAA. The present invention also relates to methods of producing HAA using said host cell, HAA compositions produced by these methods, as well as methods of producing fatty acid compositions, fatty alcohol compositions, or hydrocarbon compositions comprising producing HAA using said host cell, and fatty acid compositions, fatty alcohol compositions, or hydrocarbon compositions produced by said methods.
    Type: Application
    Filed: July 6, 2016
    Publication date: April 26, 2018
    Inventors: Lars Blank, Till Tiso, Andrea M. Germer
  • Patent number: 9854799
    Abstract: Provided is a host cell comprising a rhlA gene or an ortholog thereof, under the control of a heterologous promoter and a rhlB gene or an ortholog thereof, under the control of a heterologous promoter. The host cell is capable of achieving a carbon yield of more than 0.18 Cmol rhamnolipid/Cmol substrate. Provided is also a method of producing rhamnolipids, employing such a host cell.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: January 2, 2018
    Assignee: Amlika Mercantile Private Limited
    Inventors: Lars Blank, Frank Rosenau, Susanne Wilhelm, Andreas Wittgens, Till Tiso
  • Patent number: 9012227
    Abstract: The present invention relates to a cell, which has been genetically modified relative to its wild type, so that in comparison with its wild type it is able to produce more ?-aminocarboxylic acids, more ?-aminocarboxylic acid esters or more lactams derived from ?-aminocarboxylic acids, starting from carboxylic acids or carboxylic acid esters. Furthermore, the present invention relates to a method for the production of a genetically modified cell, the cells obtainable by this method, a method for the production of ?-aminocarboxylic acids, of ?-aminocarboxylic acid esters or of lactams derived from ?-aminocarboxylic acids, the ?-aminocarboxylic acids, ?-aminocarboxylic acid esters or lactams derived from ?-aminocarboxylic acids obtainable by this method, a method for the production of polyamides based on ?-aminocarboxylic acids or based on lactams and the polyamides obtainable by this method.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 21, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Andreas Karau, Volker Sieber, Thomas Haas, Harald Haeger, Katrin Grammann, Bruno Buehler, Lars Blank, Andreas Schmid, Guido Jach, Bernd Lalla, Andreas Mueller, Katrin Schullehner, Peter Welters, Thorsten Eggert, Andrea Weckbecker
  • Publication number: 20150011741
    Abstract: The present invention provides methods for the isolation of an amphipathic, hydrophobic or hydrophilic compound from a medium that is either hydrophilic or hydrophobic, respectively, said methods comprising allowing the formation and/or accumulation of foam comprising said compound at the medium-gas interface, applying said foam directly onto an adsorbent which effects collapse of said foam, and isolating said adsorbed compound by desorption.
    Type: Application
    Filed: December 12, 2012
    Publication date: January 8, 2015
    Applicant: TECHNISCHE UNIVERSITAET DORTMUND
    Inventors: Lars Blank, Benjamin Kuepper, Eva Maria Del Amor Villa, Rolf Wichmann, Christian Nowacki
  • Publication number: 20140235561
    Abstract: Provided is a host cell comprising a rhlA gene or an ortholog thereof, under the control of a heterologous promoter and a rhlB gene or an ortholog thereof, under the control of a heterologous promoter. The host cell is capable of achieving a carbon yield of more than 0.18 Cmol rhamnolipid/Cmol substrate. Provided is also a method of producing rhamnolipids, employing such a host cell.
    Type: Application
    Filed: September 21, 2012
    Publication date: August 21, 2014
    Inventors: Lars Blank, Frank Rosenau, Susanne Wilhelm, Andreas Wittgens, Till Tiso
  • Publication number: 20100324257
    Abstract: The present invention relates to a cell, which has been genetically modified relative to its wild type, so that in comparison with its wild type it is able to produce more ?-aminocarboxylic acids, more ?-aminocarboxylic acid esters or more lactams derived from ?-aminocarboxylic acids, starting from carboxylic acids or carboxylic acid esters. Furthermore, the present invention relates to a method for the production of a genetically modified cell, the cells obtainable by this method, a method for the production of ?-aminocarboxylic acids, of ?-aminocarboxylic acid esters or of lactams derived from ?-aminocarboxylic acids, the ?-aminocarboxylic acids, ?-aminocarboxylic acid esters or lactams derived from ?-aminocarboxylic acids obtainable by this method, a method for the production of polyamides based on ?-aminocarboxylic acids or based on lactams and the polyamides obtainable by this method.
    Type: Application
    Filed: December 12, 2008
    Publication date: December 23, 2010
    Applicant: EVONIK DEGUSSA Gmbh
    Inventors: Andreas Karau, Volker Sieber, Thomas Haas, Harald Haeger, Katrin Grammann, Bruno Buehler, Lars Blank, Andreas Schmid, Guido Jach, Bernd Lalla, Andreas Mueller, Katrin Schullehner, Peter Welters, Thorsten Eggert, Andrea Weckbecker
  • Publication number: 20040214305
    Abstract: A method of enhancing biomass yield of a lactic acid bacterial species cell culture, comprising cultivating the cells in a process comprising the steps of providing conditions that results in a reduced glycolytic flux and providing conditions that enable the cells to have, under aerobic conditions, a respiratory metabolism. The increased yield of biomass may be the result of an increased yield of ATP which can be obtained by activating the native ATP synthase activity of the H+-ATPase complex by lowering the ATP/ADP ratio, e.g. by carbon source limitation, and/or by increasing the proton gradient (membrane potential) of the cells, e.g. by enhancing or establishing an electron transport chain which can be achieved by enhancing expression of dehydrogenases or electron transport chain components, by adding to the medium a quinone or porphyrin compound or by enhancing the expression of the H+-ATPase activity.
    Type: Application
    Filed: July 22, 2003
    Publication date: October 28, 2004
    Applicant: DANMARKS TEKNISKE UNIVERSITET
    Inventors: Lars Blank, Peter Ruhdal Jensen, Brian Jensen Koebmann
  • Patent number: 6610530
    Abstract: A method of enhancing biomass yield of a lactic acid bacterial species cell culture, comprising cultivating the cells in a process comprising the steps of providing conditions that results in a reduced glycolytic flux and providing conditions that enable the cells to have, under aerobic conditions, a respiratory metabolism. The increased yield of biomass may be the result of an increased yield of ATP which can be obtained by activating the native ATP synthase activity of the H+-ATPase complex by lowering the ATP/ADP ratio, e.g. by carbon source limitation, and/or by increasing the proton gradient (membrane potential) of the cells, e.g. by enhancing or establishing an electron transport chain which can be achieved by enhancing expression of dehydrogenases or electron transport chain components, by adding to the medium a quinone or porphyrin compound or by enhancing the expression of the H+-ATPase activity.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: August 26, 2003
    Assignee: Danmarks Tekniske Universitet
    Inventors: Lars Blank, Peter Ruhdal Jensen, Jensen B. Koebmann
  • Publication number: 20020034815
    Abstract: A method of enhancing biomass yield of a lactic acid bacterial species cell culture, comprising cultivating the cells in a process comprising the steps of providing conditions that results in a reduced glycolytic flux and providing conditions that enable the cells to have, under aerobic conditions, a respiratory metabolism. The increased yield of biomass may be the result of an increased yield of ATP which can be obtained by activating the native ATP synthase activity of the H+-ATPase complex by lowering the ATP/ADP ratio, e.g. by carbon source limitation, and/or by increasing the proton gradient (membrane potential) of the cells, e.g. by enhancing or establishing an electron transport chain which can be achieved by enhancing expression of dehydrogenases or electron transport chain components, by adding to the medium a quinone or porphyrin compound or by enhancing the expression of the H+-ATPase activity.
    Type: Application
    Filed: July 5, 2001
    Publication date: March 21, 2002
    Inventors: Lars Blank, Peter Ruhdal Jensen, Brian Jensen Koebmann